Advertisement

Flow of Aqueous Solutions in Carbon Nanotubes

  • S. C. Kassinos
  • J. H. Walther
  • E. Kotsalis
  • P. Koumoutsakos
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 39)

Summary

We conduct simulations of water flowing inside carbon nanotubes using non-equilibrium molecular dynamics simulations. A new adaptive forcing scheme is proposed to enforce a mean center of mass velocity. This scheme is compared to the non-adaptive, constant body/gravity force for the flow of methane in a carbon nanotube. The two schemes produce similar streaming velocity profiles and practically identical slip lengths. The wall slip predicted in the present simulations is found to be considerably shorter than the one observed in earlier studies using the constant body/gravity force scheme at considerably lower pressures. This observation is reminiscent of the slip length reduction with pressure increase that has been observed in the case of Couette flow of water. For water flowing through carbon nanotubes with diameters of 2.712, 4.068 and 5.424 nmand with flow speeds of 100 m s-1 we find slip lengths of 10, 12, and 18 nm. In addition, we consider mixtures of nitrogen and water flowing in a (20,20) carbon nanotube with diameter of 2.712 nm. For the mixture we find that the slip length is reduced to 6 nm as compared to 10 nm slip for the pure water. The shorter slip length is attributed to the fact that nitrogen forms droplets at the carbon surface, thus partially shielding the bulk flow from the hydrophobic effect.

Keywords

Carbon Nanotubes Slip Length NEMD Simulation Identical Slip Streaming Velocity Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [AMT02]
    P. Attard, M. P. Moody, and J. W. G. Tyrrell. Nanobubbles: the big picture. Physica A314(1-4):696–7052002.CrossRefGoogle Scholar
  2. [BB99]
    Jean-Louis Barrat and Lydéric Bocquet. Large slip effect at a nonwetting fluid-solid interface. Phys. Rev. Lett.82(23):4671–46741999.CrossRefGoogle Scholar
  3. [BCTM01]
    J. Baudry, E. Charlaix, A. Tonck, and D. Mazuyer. Experimental evidence for a large slip effect at a nonwetting fluid-solid interface. Langmuir17:5232–52362001.CrossRefGoogle Scholar
  4. [BGS87]
    H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma. The missing term in effective pair potentials. J. Phys. Chem.91:6269–62711987.CrossRefGoogle Scholar
  5. [BKB02]
    Elmar Bonaccurso, Michael Kappl, and Hans-Jürgen Butt. Hydrodynamic force measurements: Boundary slip of water on hydrophilic surfaces and electrokinetic effects. Phys. Rev. Lett.88(7):0761032002.CrossRefGoogle Scholar
  6. [BS87]
    Mary J. Bojan and William A. Steele. Interactions of diatomic molecules with graphite. Langmuir3(6):1123–11271987.CrossRefGoogle Scholar
  7. [CKB01]
    Marek Cieplak, Joel Koplik, and Jayanth R. Banavar. Boundary conditions at a fluid-solid interface. Phys. Rev. Lett.86(5):803–8062001.CrossRefGoogle Scholar
  8. [CSS84]
    N. V. Churaev, V. D. Sobolev, and A. N. Somov. Slippage of liquids over lyophobic solid surfaces. J. Coll. Interface Sci.97(2):574–5811984.CrossRefGoogle Scholar
  9. [HRN01]
    G. Hummer, J. C. Rasaiah, and J. P. Noworyta. Water conduction through the hydrophobic channel of a carbon nanotube. Nature414:188–1902001.CrossRefGoogle Scholar
  10. [HvP60]
    H. Helmholtz and G. von Piotrowski. Über reibung tropfbarer flussigkeiten. Sitzungsberichte der Kaiserlich Akademie der Wissenschaften40:607–6581860.Google Scholar
  11. [KB95]
    Joel Koplik and Jayanth R. Banavar. Continuum deductions from molecular hydrodynamics. Annu. Rev. Fluid Mech.27:257–2921995.CrossRefGoogle Scholar
  12. [KGH03]
    Amrit Kalra, Shekhar Garde, and Gerhard Hummer. Osmotic water transport through carbon nanotube membranes. Proc. Natl. Acad. Sci. USA100(18):10175–101802003.Google Scholar
  13. [KHM97]
    B. Jirage Kshama, John C. Hulteen, and Charles R. Martin. Nanotube-based molecular-filtration membranes. Science278(5338):655–6581997.CrossRefGoogle Scholar
  14. [LCW99]
    Ka Lum, David Chandler, and John D. Weeks. Hydrophobicity at small and large length scales. J. Phys. Chem. B103:4570–45771999.CrossRefGoogle Scholar
  15. [LH89]
    W. Loose and S. Hess. Rheology of dense model fluids via nonequilibrium molecular dynamics: shear thinning and ordering transition. Rheol. Acta28:91–1011989.CrossRefGoogle Scholar
  16. [LMR84]
    C. Y. Lee, J. A. McCammon, and P. J. Rossky. The structure of liquid water at an extended hydrophobic surface. J. Chem. Phys.80(9):4448–44551984.CrossRefGoogle Scholar
  17. [PWW01]
    M. W. J. Prins, W. J. J. Welters, and J. W. Weekamp. Fluid control in multichannel structures by electrocapillary pressure. Science291:277–2802001.CrossRefGoogle Scholar
  18. [Sch56]
    Erhard Schnell. Slippage of water over nonwettable surfaces. J. Appl. Phys.27(10):1149–11521956.CrossRefGoogle Scholar
  19. [SNQ01]
    V. P. Sokhan, D. Nicholson, and N. Quirke. Fluid flow in nanopores: An examination of hydrodynamic boundary conditions. J. Chem. Phys.115(8):3878–38872001.CrossRefGoogle Scholar
  20. [SNQ02]
    Vladimir P. Sokhan, David Nicholson, and Nicholas Quirke. Fluid flow in nanopores: Accurate boundary conditions for carbon nanotubes. J. Chem. Phys.117(18):8531–85392002.CrossRefGoogle Scholar
  21. [TG00]
    Karl P. Travis and Keith E. Gubbins. Poiseuille flow of Lennard-Jones fluids in narrow slit pores. J. Chem. Phys.112(4):1984–19942000.CrossRefGoogle Scholar
  22. [TR90]
    Peter A. Thompson and Mark O. Robbins. Shear flow near solids: Epitaxial order and flow boundary conditions. Phys. Rev. A41(12):6830–68411990.CrossRefGoogle Scholar
  23. [TT97]
    Peter A. Thompson and Sandra M. Troian. A general boundary condition for liquid flow at solid surfaces. Nature389:360–3621997.CrossRefGoogle Scholar
  24. [TTE97]
    Karl P Travis, B. D. Todd, and Denis J. Evans. Departure from Navier-Stokes hydrodynamics in confined liquids. Phys. Rev.E 55(4):4288–42951997.Google Scholar
  25. [vGB77]
    W. F. van Gunsteren and H. J. C. Berendsen. Algorithms for macromolecular dynamics and constraint dynamics. Mol. Phys.37(5):1311–13271977.CrossRefGoogle Scholar
  26. [Vin99]
    Olga I. Vinogradova. Slippage of water over hydrophobic surfaces. Int. J. Miner. Process.56:31–601999.CrossRefGoogle Scholar
  27. [WJHK01]
    J. H. Walther, R. Jaffe, T. Halicioglu, and P. Koumoutsakos. Carbon nanotubes in water: Structural characteristics and energetics. J. Phys. Chem. B105:9980–99872001.CrossRefGoogle Scholar
  28. [WJW+02]_J. H. Walther, R. Jaffe, T. Werder, T. Halicioglu, and P. Koumoutsakos. On the boundary condition for water at a hydrophobic surface. In Proceedings of the Summer Program 2002, pages 317–329, Center for Turbulence Research, Stanford University/NASA Ames, 2002.Google Scholar
  29. [WWJ+01]_T. Werder, J. H. Walther, R. Jaffe, T. Halicioglu, F. Noca, and P. Koumoutsakos. Molecular dynamics simulations of contact angles of water droplets in carbon nanotubes. Nano Letters1(12):697–7022001.CrossRefGoogle Scholar
  30. [WWJ+03 ]_T. Werder, J. H. Walther, R. L. Jaffe, T. Halicioglu, and P. Koumoutsakos. On the water-graphite interaction for use in MD simulations of graphite and carbon nanotubes. J. Phys. Chem. B107:1345–13522003.CrossRefGoogle Scholar
  31. [ZS03]
    Fangquian Zhu and Klaus Schulten. Water and proton conduction through carbon nanotubes as models for biological channels. Biophys. J.85(1):236–2442003.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • S. C. Kassinos
    • 1
  • J. H. Walther
    • 2
  • E. Kotsalis
    • 2
  • P. Koumoutsakos
    • 2
  1. 1.Dept. of Mechanical and Manufacturing EngineeringUniversity of CyprusCyprus
  2. 2.Institute of Computational ScienceETH ZurichSwitzerland

Personalised recommendations