Large Scale Density Functional Calculations

  • Jürg Hutter
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 39)


New developments in algorithms for density functional calculations within the Kohn-Sham methods allow to study systems with several hundreds of atoms. We present a linear scaling method for the construction of the Kohn-Sham Hamiltonian based on fast Fourier transforms. To solve the Kohn-Sham equation the orbital rotation method provides an efficient scheme for small to medium sized systems, where methods depending on the sparsity of the density matrix are not yet applicable. Combining these methods with multiscale algorithms will make it possible to access length and time scales relevant for many problems in materials science, life sciences or catalysis.


Fast Multipole Method Basis State Time Linear Scaling Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BPH02]
    G. Berghold, M. Parrinello, and J. Hutter. Polarized atomic orbitals for linear scaling methods. J. Chem. Phys.116:1800, 1810, 2002.CrossRefGoogle Scholar
  2. [CCS+99]
    C. Cavazzoni, G. L. Chiarotti, S. Scandalo, E. Tosatti, M. Bernasconi, and M. Parrinello. Superionic and metallic states of water and ammonia at giant planet conditions. Science283:44, 46, 1999.CrossRefGoogle Scholar
  3. [CP85]
    R. Car and M. Parrinello. Unified Approach for Molecular Dynamics and Density-Functional Theory. Physical Review Letters55:2471, 2474, 1985.CrossRefGoogle Scholar
  4. [CPM]
    CPMD V3.7 Copyright IBM Corp 1990-2003, Copyright MPI fur Festkorperforschung Stuttgart 1997-2001. see also Scholar
  5. [CR01]
    P. Carloni and U. Rothlisberger. Simulations of enzymatic systems: Perspectives from Car-Parrinello molecular dynamics simulations. In L. Eriksson, editorTheoetical Biochemistry — Processes and Properties of Biological Systems, page 215. Elsevier Science, 2001.Google Scholar
  6. [CTS94]
    J. R. Chelikowsky, N. Troullier, and Y. Saad. Finite-differencepseudopotential method — electronic-structure calculations without a basis. Phys. Rev. Lett.72:1240, 1243, 1994.CrossRefGoogle Scholar
  7. [EAS98]
    A. Edelman, T. A. Arias, and S. T. Smith. The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl.20:303, 353, 1998.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [ETO+95]
    K. Eichkorn, O. Treutler, H. Ohm, M. Haser, and R. Ahlrichs. Auxiliary basis-sets to approximate coulomb potentials. Chem. Phys. Lett.240:283, 289, 1995.CrossRefGoogle Scholar
  9. [FMP02a]
    L. Fusti-Molnar and P. Pulay. Accurate molecular integrals and energies using combined plane wave and Gaussian basis sets in molecular electronic structure theory. J. Chem. Phys.116:7795, 7805, 2002.CrossRefGoogle Scholar
  10. [FMP02b]
    L. Fusti-Molnar and P. Pulay. The fourier transform coulomb method: E.cient and accurate calculation of the coulomb operator in a Gaussian basis. J. Chem. Phys.117:7827, 7835, 2002.CrossRefGoogle Scholar
  11. [GCP02]
    F. L. Gervasio, P. Carloni, and M. Parrinello. Electronic structure of wet DNA. Phys. Rev. Lett.89:1081022002.CrossRefGoogle Scholar
  12. [GHP01]
    C. K. Gan, P. D. Haynes, and M. C. Payne. First-principles densityfunctional calculations using localized spherical-wave basis sets. Phys. Rev. B63:2051092001.CrossRefGoogle Scholar
  13. [Goe99]
    S. Goedecker. Linear scaling electronic structure methods. Rev. Mod. Phys.71:1085, 1123, 1999.CrossRefGoogle Scholar
  14. [HGG97]
    E. Hern.andez, M. J. Gillan, and C. M. Goringe. Basis functions for linear-scaling first-principles calculations. Phys. Rev. B55:13485, 13493, 1997.CrossRefGoogle Scholar
  15. [HJO00]
    T. Helgaker, P. J. rgensen, and J. Olsen. Molecular Electronic-structure Theory. John Wiley & Sons Ltd, Chichester2000.Google Scholar
  16. [HK64]
    P. Hohenberg and W. Kohn. Inhomogeneous electron gas. Phys. Rev.136:B864, B871, 1964.MathSciNetCrossRefGoogle Scholar
  17. [HPV94]
    J. Hutter, M. Parrinello, and S. Vogel. Exponential transformation of molecular-orbitals. J. Chem. Phys.101:3862, 3865, 1994.CrossRefGoogle Scholar
  18. [HWH+91]
    H. Horn, H. Weiss, M. Haser, M. Ehrig, and R. Ahlrichs. Prescreening of 2-electron integral derivatives in SCF gradient and hessian calculations. J. Comp. Chem.12:1058, 1064, 1991.CrossRefGoogle Scholar
  19. [KP00]
    M. Krack and M. Parrinello. All-electron ab-initio molecular dynamics. Phys. Chem. Chem. Phys.2:2105, 2112, 2000.CrossRefGoogle Scholar
  20. [KS65]
    W. Kohn and L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev.140:A1133, A1139, 1965.MathSciNetCrossRefGoogle Scholar
  21. [LHG97]
    M. S. Lee and M. Head-Gordon. Polarized atomic orbitals for selfconsistent field electronic structure calculations. J. Chem. Phys.107:9085, 9095, 1997.CrossRefGoogle Scholar
  22. [LHP97]
    G. Lippert, J. Hutter, and M. Parrinello. A hybrid Gaussian and plane wave density functional scheme. Mol. Phys.92:477, 487, 1997.Google Scholar
  23. [LHP99]
    G. Lippert, J. Hutter, and M. Parrinello. The Gaussian and augmentedplane-wave density functional method for ab initio molecular dynamics simulations. Theor. Chem. Acc.103:124, 140, 1999.CrossRefGoogle Scholar
  24. [MH00]
    D. Marx and J. Hutter. ab-initio Molecular Dynamics: Theory and Implementation. In J. Grotendorst, editorModern Meth-ods and Algorithms of Quantum Chemistry, volume 1 of NIC Series, pages 329, 477. FZ Julich, Germany2000. see also Scholar
  25. [OAS96]
    P. Ordej.on, E. Artacho, and J. M. Soler. Self-consistent order-N density-functional calculations for very large systems. Phys. Rev. B53:R10441, R10444, 1996.CrossRefGoogle Scholar
  26. [PY89]
    R. G. Parr and W. Yang. Density-Functional Theory of Atoms and Molecules. Oxford University Press, New York1989.Google Scholar
  27. [Rot01]
    U. Rothlisberger. 15 years of Car-Parrinello simulations in physics,chemistry and biology. In J. Leszczynski, editorComputational Chemistry: Reviews of Current Trends, pages 33, 68. World Scientific, Singapore2001.CrossRefGoogle Scholar
  28. [SF75]
    H. Sambe and R. H. Felton. New computational approach to slaters SCF-χa equation. J. Chem. Phys.62:1122, 1126, 1975.CrossRefGoogle Scholar
  29. [VH03]
    J. VandeVondele and J. Hutter. An e.cient orbital transformation method for electronic structure calculations. J. Chem. Phys.118:4365, 4369, 2003.CrossRefGoogle Scholar
  30. [VHG02]
    T. Van Voorhis and M. Head-Gordon. A geometric approach to direct minimization. Mol. Phys.100:1713, 1721, 2002.CrossRefGoogle Scholar
  31. [WJGHG94]
    C. A. White, B. G. Johnson, P. M. W. Gill, and M. Head-Gordon. The continuous fast multipole method. Chem. Phys. Lett.230:8, 16, 1994.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Jürg Hutter
    • 1
  1. 1.Physical Chemistry InstituteUniversity of ZürichZürichSwitzerland

Personalised recommendations