Advertisement

Computer simulations of SiO2 and GeO2

  • Michael Hawlitzky
  • Jürgen Horbach
  • Kurt Binder
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 39)

Abstract

Classical Molecular Dynamics (MD) simulations are used to study structural and dynamic properties of amorphous germania (GeO2) in comparison to those of silica (SiO2). The total structure factor, as obtained from these simulations, is in very good agreement with that of neutron scattering experiments, both for germania and silica. The tetrahedral network structure in silica and germania leads to a prepeak in the structure factor that appears at slightly smaller wavenumbers in GeO2 than in SiO2. At high temperatures the diffusion constants are very similar in both systems whereas at low temperatures diffusion is significantly faster in germania than in silica. We also outline the strategy for the development of a potential for SiO2-GeO2 mixtures by means of Car-Parrinello MD.

Keywords

Classical Molecular Dynamics Lithium Silicate Partial Structure Factor Sodium Disilicate Total Structure Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [BKS90]
    B. W. H. van Beest, G. J. Kramer, and R. A. van Santen: Force fields for silicates and aluminophosphates based on ab initio calculations. Phys. Rev. Lett.64, 1955 (1990).Google Scholar
  2. [CP85]
    R. Car and M. Parrinello: Unified Approach for Molecular dynamics and Density Functional Theory. Phys Rev. Lett.552471 (1985).CrossRefGoogle Scholar
  3. [HHB]
    M. Hawlitzky, J. Horbach, and K. Binder: Structural and dynamic properties of germania: A molecular dynamics computer simulation. In preparation.Google Scholar
  4. [HK99]
    J. Horbach and W. Kob: Static and dynamic properties of a viscous silica melt. Phys. Rev. B603169 (1999).CrossRefGoogle Scholar
  5. [HKB02]
    J. Horbach, W. Kob, and K. Binder: Dynamics of sodium in sodium disilicate: Channel relaxation and sodium diffusion. Phys. Rev. Lett.88125502 (2002).CrossRefGoogle Scholar
  6. [JKJ01]
    P. Jund, W. Kob, and R. Jullien, Channel diffusion of sodium in a silicate glass. Phys. Rev. B64134303 (2001).CrossRefGoogle Scholar
  7. [LKH03]
    H. Lammert, M. Kunow, and A. Heuer, Complete identification of alkali sites in ion conducting lithium silicate glasses: A computer study of ion dynamics. Phys. Rev. Lett.90215901 (2003).CrossRefGoogle Scholar
  8. [MH00]
    D. Marx and J. Hutter: Ab initio moecular dynamics: Theory and Implementation. Modern Methods and Algorithms of Quantum chemistry, NIC Series, Jülich, Vol. 1301–449 (2000).Google Scholar
  9. [OE98]
    R. D. Oeffner and S. R. Elliott: Interatomic potential for germanium dioxide empirically fitted to an ab initio energy surface. Phys Rev. B5814791 (1998).CrossRefGoogle Scholar
  10. [PC92]
    D. L. Price and J. M. Carpenter: Scattering function of vitreous silica. J. Noncryst. Sol.92153 (1987).CrossRefGoogle Scholar
  11. [SBL03]
    S. Sampath, C. J. Benmore, K. M. Lantzky, J. Neuefeind, K. Leinenweber, D. L. Price, J. L. Yarger: Intermediate-Range Order in Permanently Densified GeO2 Glass. Phys. Rev. Lett.90115502 (2003).CrossRefGoogle Scholar
  12. [SSP01]
    I. Saika-Voivod, F. Sciortino, and P. H. Poole: Computer simulations of liquid silica: Equation of state and liquid-liquid phase transition. Phys. Rev. E63011202 (2001).CrossRefGoogle Scholar
  13. [WHK03]
    A. Winkler, J. Horbach, W. Kob, K. Binder: Structure and Diffusion in an amorphous aluminium silicate: A Molecular Dynamics computer simulation. J. Chem. Phys. (in press). Preprint: cond-mat/0305227.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Michael Hawlitzky
    • 1
  • Jürgen Horbach
    • 1
  • Kurt Binder
    • 1
  1. 1.Institut für PhysikJohannes Gutenberg-Universität MainzMainzDeutschland

Personalised recommendations