Advertisement

Finite Eigenstructure Assignment for Input Delay Systems

  • Sabine Mondié
  • Jean Jacques Loiseau
Conference paper
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 38)

Abstract

The problem of invariant factors assignment of input delay systems with classical finite spectrum assigment control laws wit h distributed delays is adressed. The multiplicities of the invanant factors are shown to be restricted by specified Rosenbrock type inequalities. The results are proved with the help of an equivalent linear assignment problem with no delay, and within the Bezout domain ξ. Two different algorithms are hence provided. A bidimensional illustrative example is given.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Artstein Z (1982) Linear systems with delayed controls: a reduction, IEEE Trans Autom Contr AC-27:869–879MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bellman R, Cooke KL (1963) Differential difference equations. Academic Press London.Google Scholar
  3. 3.
    Brethe D (1997) Contribution à l’élUde de la stabilisation des systèmes linéaires à retards. PhD Thesis, Université de Nantes FranceGoogle Scholar
  4. 4.
    Brethé D, Loiseau JJ (1998) An effective algOrithm for finite spectrum assignment of single-input systems with delays, Mathematics in Computers and Simulation 45:339–348zbMATHCrossRefGoogle Scholar
  5. 5.
    Gantmaeher FR (1959) The theory of matrices, Vol 1. AMS Chelsea Publishing New YorkGoogle Scholar
  6. 6.
    Kamen EW, Khargonekar PP. Tannenbaum A (1986) Proper stable bezout factorizations and feedback control of linear time delay systems, Int J Contr 43:837–857MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Kailath T (1980) Linear systems. Prentice Hall Englewood Cliffs, N.J.zbMATHGoogle Scholar
  8. 8.
    Kučera V (1991) Analysis and design of discrete linear control systems. Prentice-Hall London, and Academia, PragueGoogle Scholar
  9. 9.
    Loiseau JJ (2000) Algebraic tools for the control and stabilization of time-delay systems, Annual Reviews in Control 24:135–149Google Scholar
  10. 10.
    Loiseau JJ (2001) Invariant factors assignment for a class of time-delay systems, Kybernetika 37:265–275MathSciNetzbMATHGoogle Scholar
  11. 11.
    Manitius AZ, Olbrot AW (1979) Finite spectrum assignment problem for systems with delays, IEEE Trans AUlom Contr AC-24:541–553MathSciNetCrossRefGoogle Scholar
  12. 12.
    Niculescu S-I (2001) Delays effects on stability, A robust control approach. Springer Berlin Heidelberg New YorkGoogle Scholar
  13. 13.
    Olbrot A (1978) Stabilizability, delectability, and spectrum assignment for linear aUtonomous systems with general time delays, IEEE Trans Aulom Contr AC-23:887–890MathSciNetCrossRefGoogle Scholar
  14. 14.
    Olbrot A (1998) The polynomial loolbox, Polynomial methods for systems, signal and control. Polyx PragueGoogle Scholar
  15. 15.
    Rosenbrock H.H. (1970) State space and muhivariable theory. Wiley New YorkGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Sabine Mondié
    • 1
  • Jean Jacques Loiseau
    • 2
  1. 1.Departamento de Control AutomáticoCINVESTAV-IPNMexicoMexico
  2. 2.Institut de Recherche en Communications et Cybernétique de NantesNantes Cedex 03France

Personalised recommendations