Advertisement

From Lyapunov-Krasovskii Functionals for Delay-Independent Stability to LMI Conditions for µ-Analysis

  • Pierre-Alexandre Bliman
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 38)

Abstract

Our scope in this note is to give a unified view on different approaches for studying stabilit y of delay systems and parameter-dependent systems, and on estimation methods for some structured singular values. The classical approaches arc exposed in Scnions 1 to 3. A new result which links them together is given in Section 4, Elements of proof are gathered in Section 5. Comments are provided in Section 6. Finally, Section 7 proposes some open problems. For sake of space, exposure is kept to minimum, the reader is refered to the cited literature for more details.

Keywords

Coefficient Matrix Linear Matrix Inequality Robust Stability Delay System Linear Matrix Inequality Approach 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Asai, S. Hara, T. Iwasaki (1996). Simultaneous modeling and synthesis for robust control by LFT scaling. Proc. IFAC World COngress part G, 309–314Google Scholar
  2. 2.
    P.-A. Bijman (2002). Lyapunov equation for the stability of linear delay systems of retarded and neutral type, IEEE TrailS. Automat. Control 47no 2, 327-335CrossRefGoogle Scholar
  3. 3.
    P.-A. Bliman (2002). Nonconservative LMI approach 10 robust stability for systems with uncertain scalar parameters, Proc. oJ 41th IEEE CDC, Las Vegas (Nevada), December 2002Google Scholar
  4. 4.
    P.-A. Bliman (2003). An existence result for polynomial solutions of parameter-dependent LMIs Report research no 4798, INRIA. Available online at http://www.inria.fr/rrrt/rr-4798.htmlGoogle Scholar
  5. 5.
    P.-A. Bliman (2003, to appear). A convex approach to robust stability for linear systems with uncertain scalar parameters, SIAM J. on Control and Optimization Google Scholar
  6. 6.
    S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan (1994). Linear matrix inequalities in system and control theory, SIAM Studies in Applied Mathematics vol. 15, SIAM PhiladelphiaGoogle Scholar
  7. 7.
    J. Chen, H.A. Latchman (1995). Frequency sweeping tests for stability independent of delay, IEEE Trans. Automat. Control 40no 9, 1640–1645MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    M. Deltori, C.W. Scherer (1998). Robust stability analysis for parameter dependent systems using full block S-procedure, Proc. of 37th IEEE CDC, Tampa (Florida), 2798–2799Google Scholar
  9. 9.
    M. Dellori, C.W. Scherer (2000). New robust stability and pcrfonnance conditions based on parameter dependent multipliers, Proc. oJ 39th IEEE CDC, Sydney (Australia)Google Scholar
  10. 10.
    J.C. Doyle (1982). Analysis of feedback systems with structured uncertainties, IEE Proc. Part D 129no 6, 242~Z50MathSciNetGoogle Scholar
  11. 11.
    E. Feron, P. Apkarian, P. Gahinet (1996). Analysis and synthesis of robust control systems via parameter-dependent Lyapunov functions, IEEE Trans. Automat. Control 41no 7, 1041–1046MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    M. Fu, N.E. Barabanov (1997). Improved upper bounds for the mixed structured singular value, IEEE Trans. Automat. Control 42no 10, 1447–1452MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    M. Fu, S. Oasgupta (2000). Parametric Lyapunov functions for uncertain systems: the multiplier approach, in Advances in Linear Matrix Inequality Methods in Control (L. El Ghaoui S.-I. Niculeseu eds.), SIAM Philadelphia, 95–108CrossRefGoogle Scholar
  14. 14.
    P. Gahinet, P. Apkarian, M. Chilali (1996). Affine parameter-dependent Lyapunov functions and real parametric uncertainty, IEEE Trans. Automat. Control 41no 3, 436–442MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    J.K. Hale (1977). Theory of Functional differential equations, Applied Mathematical Sciences 3, Springer Verlag New YorkGoogle Scholar
  16. 16.
    J.K. Hale. E.F. Infante, F.S.P. Tsen (l985). Stability in linear delay equations. J. Math. Anal. Appl. 115, 533–555MathSciNetCrossRefGoogle Scholar
  17. 17.
    D. Hertz, E.I. Jury, E. Zeheb (1984). Stability independent and dependent of delay for delay differential systems, J. Franklin Institute 318no 3, 143–150MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    T. Iwasaki (1998). LPV system anal ysis with quadratic separator, Proc. of 37th IEEE CDC, Tampa Florida)Google Scholar
  19. 19.
    T. Iwasaki, S. Hara (1998). Well-posedness of feedback systems: insights into exact robustness analysis and approximate computations. IEEE TrailS. Automat. Control 43no 5, 619–630MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    E. W. Kamen (1982). Linear systems with commensurate time delays: stability and stabilization independent of delay, IEEE TranS. Automat. Control 27no 2, 367–375MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    E. W. Kamen (1983). Correction to “Linear systems with commensurate time delays: stability and stabilization independent of delay”. IEEE Trans. Automat. Control 28no 2, 248–249MathSciNetCrossRefGoogle Scholar
  22. 22.
    N.N. Krasovskii (1963). Stability of motion. Applications of LyapUnOv’s secOnd method to differential systems and equations with delay, Stanford University Press StanfordzbMATHGoogle Scholar
  23. 23.
    S.-I. Niculescu. J.-M. Dion, L. Dugard, H. Li (1996). Asymptotic stability sets for linear systems with commensurable delays: a matrix pencil approach, IEEE/IMACS CESA’ 96, Lille FranceGoogle Scholar
  24. 24.
    D.C.W. Ramos, P.L.D. Peres (2001). An LMI approach 10 compute robust stability domains for uncertain linear systems, Proc. American Contr. Conf., Arlington (Virginia), 4073–4078Google Scholar
  25. 25.
    A. Rantzer (1996). On the Kalman-Yakubovich-Popov lemma, Syst. Contr. Lett. 28no 1, 7–10MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    G. Szegö, R.E. Kalman (1963). Sur la stabilité absolue d’un système d’équations aux différences finies, Camp. Rend. Acad. Sci. 257no 2, 338–390Google Scholar
  27. 27.
    O. Toker, H. Özbay (1996). Complexity issues in robust stability of linear delay-differential systems, Math. Control Signals Systems 9no 4, 386–400MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    O. Toker, H. Özbay (1998). On the complexity of purely complex µ computation and related problems in multidimensional systems, IEEE TranS. AutOmat. Control 43no 3, 409–414MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    A. Trofino (1999). Parameter dependent Lyapunov functions for a class of uncertain linear systems: a LMI approach, Proc. of 38th IEEE CDC, Phoenix (Arizona), 2341–2346Google Scholar
  30. 30.
    A. Trofino, C.E. de Souza (1999). Bi-quadratic stability of uncertain linear systems, Proc. of 38th IEEE CDC, Phoenix (Arizona)Google Scholar
  31. 31.
    V.A. Yakubovich (1962). Solution of certain matrix inequalities in the stability theory of nonlinear control systems, Dokl. Akad. Nauk. SSSR 143, 1304–1307 (English translation in Soviet Math. Oakl. 3, 620–623 (1962))MathSciNetGoogle Scholar
  32. 32.
    J. Zhang, C.R. Knospe, P. Tsiotras (2001). Stability of time-delay systems: equivalence between Lyapunov and scaled small-gain conditions. IEEE TrailS. Automat. Control 46no 3 482–486zbMATHCrossRefGoogle Scholar
  33. 33.
    X. Zhang, P. Tsiotras, T. Iwasaki (2003, Submitted). Stability analysis of linear parametrically-dependent systems. 42nd IEEE COnfernce on Decision and Control, Maui (Hawaii)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Pierre-Alexandre Bliman
    • 1
  1. 1.INRIALe Chesnay cedexFrance

Personalised recommendations