Advertisement

Output Regulation of Nonlinear Neutral Systems

  • Emilia Fridman
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 38)

Abstract

Output regulation of neutral type nonlinear systems is considered. Regulator equations are derived, which generalize Francis-Bymes-Isidori equations to the case of neutral systems. It is shown that, under standard assumptions, the regulator problem is solvable if and only if these equations are solvable. In the linear case, the solution of these equations is reduced 10 linear matrix equations.

Keywords

Center Manifold Regulator Problem Output Regulation Regulator Equation Neutral Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Ait Babram, O. Arino and M. Hbid, Computational scheme of a center manifold for neutral functional differential equations, J. Math. Anal. Appl. 258 ([2001]) 396–414.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    C.I. Byrnes and A. Isidori, Output regulation for nonlinear systems: an overview, Int. J. of Rob. and Nonlin. Cont. 10 ([2000]) 323–337.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    C.I. Bymes, I. G. Lauko, D. S. Gilliam and V. I. Shubov, Output Regulation for Linear Distributed parameter systems, IEEE Trans. On Aut. Cont., 45 ([2000]) 2236–2252.Google Scholar
  4. 4.
    B.A. Francis, The Linear Multivariable Regulator Problem, SIAM J. on Cont. and Optim., 15 ([1977]) 486–505.MathSciNetCrossRefGoogle Scholar
  5. 5.
    E. Fridman, Asymptotics of integral manifolds and decomposition or singularly perturbed systems of neutral type, Differential equations 26 ([1990]) 457–467.MathSciNetzbMATHGoogle Scholar
  6. 6.
    E. Fridman, Output regulation of nonl inear systems with delay, Systems & Control Letters 50 ([2003]) 81–93.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    E. Fridman and U. Shaked, A descriptor system approach to H∞ control of time-delay systems, IEEE Trans. on Automat. Contr., 47 ([2002]) 253–270.MathSciNetCrossRefGoogle Scholar
  8. 8.
    J. Hale, Critical cases for neutral functional differential equations, J. Differential Eqns. 10 ([1971]) 59–82.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    J. Hale and S. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag New York, [1993].zbMATHGoogle Scholar
  10. 10.
    J. Hale and S. Verduyn Lunel, Strong stabilization of neutral functional differential equations. IMA Journal of Mathematical Control and Information, 19 ([2002]) 5–23.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    A. Isidori and C.I. Byrnes, Output regulation of nonlinear systems, IEEE Trnns. On Autom. Control 35 ([1990]) 131–140.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    K. Murakami, Bifurcated periodic solutions for delayed Van der pol equation, Neural, Parallel & Scientific Computations 7 ([1999]) 1–16.MathSciNetzbMATHGoogle Scholar
  13. 13.
    J. Schumacher, Finite-dimensional regulators for a class of infinite-dimensional systems, Systems & Control Letters, 3 ([1983]) 7–12.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    V. Strygin and E. Fridman, Asymptotics of integral manifolds of singularly peturbed differential equations with retarded argument, Math. Nachr., 117 ([1984]) 83–109.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2004

Authors and Affiliations

  • Emilia Fridman
    • 1
  1. 1.Department of Electrical EngineeringTel-Aviv University Ramat-Aviv, Tel-AvivIsrael

Personalised recommendations