Maximizing the Total Resolution of Graphs

  • Evmorfia N. Argyriou
  • Michael A. Bekos
  • Antonios Symvonis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6502)


A major factor affecting the readability of a graph drawing is its resolution. In the graph drawing literature, the resolution of a drawing is either measured based on the angles formed by consecutive edges incident to a common node (angular resolution) or by the angles formed at edge crossings (crossing resolution). In this paper, we evaluate both by introducing the notion of “total resolution”, that is, the minimum of the angular and crossing resolution. To the best of our knowledge, this is the first time where the problem of maximizing the total resolution of a drawing is studied.

The main contribution of the paper consists of drawings of asymptotically optimal total resolution for complete graphs (circular drawings) and for complete bipartite graphs (2-layered drawings). In addition, we present and experimentally evaluate a force-directed based algorithm that constructs drawings of large total resolution.


  1. 1.
    Angelini, P., Cittadini, L., di Battista, G., Didimo, W., Frati, F., Kaufmann, M., Symvonis, A.: On the perspectives opened by right angle crossing drawings. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 21–32. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Argyriou, E.N., Bekos, M.A., Symvonis, A.: Maximizing the total resolution of graphs. Technical Report arXiv:/106871 (2010)Google Scholar
  3. 3.
    Bárány, I., Tokushige, N.: The minimum area of convex lattice n-gons. Combinatorica 24(2), 171–185 (2004)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Algorithms for drawing graphs: an annotated bibliography. Comput. Geom. 4, 235–282 (1994)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Cheng, C.C., Duncanyz, C.A., Goodrichz, M.T., Kobourovz, S.G.: Drawing planar graphs with circular arcs. Discrete and Comp. Geometry 25, 117–126 (1999)MathSciNetGoogle Scholar
  6. 6.
    Di Giacomo, E., Didimo, W., Liotta, G., Meijer, H.: Area, curve complexity, and crossing resolution of non-planar graph drawings. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 15–20. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  7. 7.
    Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 206–217. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. 8.
    Eades, P.: A heuristic for graph drawing. Congressus Numerantium (42), 149–160 (1984)Google Scholar
  9. 9.
    Formann, M., Hagerup, T., Haralambides, J., Kaufmann, M., Leighton, F., Symvonis, A., Welzl, E., Woeginger, G.: Drawing graphs in the plane with high resolution. SIAM J. Comput. 22(5), 1035–1052 (1993)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Garg, A., Tamassia, R.: Planar drawings and angular resolution: Algorithms and bounds. In: Proc. 2nd Annu. Eur. Sympos. Alg., pp. 12–23 (1994)Google Scholar
  11. 11.
    Gutwenger, C., Mutzel, P.: Planar polyline drawings with good angular resolution. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 167–182. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Huang, W.: Using eye tracking to investigate graph layout effects. In: Proc. Asia-Pacific Symp. on Visualization, pp. 97–100 (2007)Google Scholar
  13. 13.
    Huang, W., Hong, S.-H., Eades, P.: Effects of crossing angles. In: Proc. of the Pacific Visualization Symp., pp. 41–46 (2008)Google Scholar
  14. 14.
    Kaufmann, M., Wagner, D. (eds.): Drawing Graphs: Methods and Models. LNCS, vol. 2025. Springer, Heidelberg (2001)MATHGoogle Scholar
  15. 15.
    Lin, C.-C., Yen, H.-C.: A new force-directed graph drawing method based on edge-edge repulsion. In: Proc. of the 9th Int. Conf. on Inf. Vis., pp. 329–334. IEEE, Los Alamitos (2005)Google Scholar
  16. 16.
    Malitz, S.M., Papakostas, A.: On the angular resolution of planar graphs. In: STOC, pp. 527–538 (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Evmorfia N. Argyriou
    • 1
  • Michael A. Bekos
    • 1
  • Antonios Symvonis
    • 1
  1. 1.School of Applied Mathematical & Physical SciencesNational Technical University of AthensGreece

Personalised recommendations