On a Tree and a Path with No Geometric Simultaneous Embedding

  • Patrizio Angelini
  • Markus Geyer
  • Michael Kaufmann
  • Daniel Neuwirth
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6502)


Two graphs G 1 = (V,E 1) and G 2 = (V,E 2) admit a geometric simultaneous embedding if there exists a set of points P and a bijection M : PV  that induce planar straight-line embeddings both for G 1 and for G 2. The most prominent problem in this area is the question whether a tree and a path can always be simultaneously embedded. We answer this question in the negative by providing a counterexample. Additionally, since the counterexample uses disjoint edge sets for the two graphs, we also prove that it is not always possible to simultaneously embed two edge-disjoint trees. Finally, we study the same problem when some constraints on the tree are imposed. Namely, we show that a tree of height 2 and a path always admit a geometric simultaneous embedding. In fact, such a strong constraint is not so far from closing the gap with the instances not admitting any solution, as the tree used in our counterexample has height 4.


Planar Graph Extended Formation Outerplanar Graph Planar Embedding Planar Drawing 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Angelini, P., Geyer, M., Kaufmann, M., Neuwirth, D.: On a tree and a path with no geometric simultaneous embedding. Tech. Report 176, Dipartimento di Informatica e Automazione, Roma Tre University (2010)Google Scholar
  2. 2.
    Brandes, U., Erten, C., Fowler, J., Frati, F., Geyer, M., Gutwenger, C., Hong, S.H., Kaufmann, M., Kobourov, S., Liotta, G., Mutzel, P., Symvonis, A.: Colored simultaneous geometric embeddings. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 254–263. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Brass, P., Cenek, E., Duncan, C., Efrat, A., Erten, C., Ismailescu, D., Kobourov, S., Lubiw, A., Mitchell, J.: On simultaneous planar graph embeddings. Comp. Geom. 36(2), 117–130 (2007)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Cabello, S., van Kreveld, M., Liotta, G., Meijer, H., Speckmann, B., Verbeek, K.: Geometric simultaneous embeddings of a graph and a matching. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 183–194. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Di Giacomo, E., Didimo, W., van Kreveld, M., Liotta, G., Speckmann, B.: Matched drawings of planar graphs. J. Graph Alg. Appl. 13(3), 423–445 (2009)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Erten, C., Kobourov, S.G.: Simultaneous embedding of planar graphs with few bends. J. Graph Alg. Appl. 9(3), 347–364 (2005)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Estrella-Balderrama, A., Fowler, J., Kobourov, S.G.: Characterization of unlabeled level planar trees. Comp. Geom. 42(6-7), 704–721 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Fowler, J., Jünger, M., Kobourov, S.G., Schulz, M.: Characterizations of restricted pairs of planar graphs allowing simultaneous embedding with fixed edges. In: Broersma, H., Erlebach, T., Friedetzky, T., Paulusma, D. (eds.) WG 2008. LNCS, vol. 5344, pp. 146–158. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    Fowler, J., Kobourov, S.: Characterization of unlabeled level planar graphs. In: Hong, S.H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 37–49. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  10. 10.
    Fowler, J., Kobourov, S.: Minimum level nonplanar patterns for trees. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 69–75. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Frati, F.: Embedding graphs simultaneously with fixed edges. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 108–113. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  12. 12.
    Frati, F., Kaufmann, M., Kobourov, S.: Constrained simultaneous and near-simultaneous embeddings. J. Graph Alg. Appl. 13(3), 447–465 (2009)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Gassner, E., Jünger, M., Percan, M., Schaefer, M., Schulz, M.: Simultaneous graph embeddings with fixed edges. In: Fomin, F.V. (ed.) WG 2006. LNCS, vol. 4271, pp. 325–335. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Geyer, M., Kaufmann, M., Vrt’o, I.: Two trees which are self-intersecting when drawn simultaneously. Disc. Math. 309(7), 1909–1916 (2009)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Graham, R.L., Rothschild, B.L., Spencer, J.H.: Ramsey Theory. John Wiley & Sons, Chichester (1990)MATHGoogle Scholar
  16. 16.
    Halton, J.H.: On the thickness of graphs of given degree. Inf. Sc. 54(3), 219–238 (1991)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Pach, J., Wenger, R.: Embedding planar graphs at fixed vertex locations. Graphs and Comb. 17(4), 717–728 (2001)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Thomassen, C.: Embeddings of graphs. Disc. Math. 124(1-3), 217–228 (1994)CrossRefMATHGoogle Scholar
  19. 19.
    Tutte, W.T.: How to draw a graph. London Math. Society 13, 743–768 (1962)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Patrizio Angelini
    • 1
  • Markus Geyer
    • 2
  • Michael Kaufmann
    • 2
  • Daniel Neuwirth
    • 2
  1. 1.Dipartimento di Informatica e AutomazioneUniversità Roma TreItaly
  2. 2.Wilhelm-Schickard-Institut für InformatikUniversität TübingenGermany

Personalised recommendations