How to Draw a Tait-Colorable Graph

  • David A. Richter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6502)


Presented here are necessary and sufficient conditions for a cubic graph equipped with a Tait-coloring to have a drawing in the real projective plane where every edge is represented by a line segment, all of the lines supporting the edges sharing a common color are concurrent, and all of the supporting lines are distinct.


  1. 1.
    Agol, I., Hass, J., Thurston, W.: The computational complexity of knot genus and spanning area. Trans. Amer. Math. Soc. 358(9), 3821–3850 (2006), (electronic), MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Biggs, N.: Algebraic graph theory. cambridge Tracts in Mathematics, vol. 67, Cambridge University Press, London (1974)Google Scholar
  3. 3.
    Björner, A., Vergnas, M.L., Sturmfels, B., White, N., Ziegler, G.M.: Oriented Matroids, 2nd edn. Cambridge University Press, Cambridge (2000)MATHGoogle Scholar
  4. 4.
    Bonnington, C.P., Little, C.H.C.: The Foundations of Topological Graph Theory. Springer, New York (1995)CrossRefMATHGoogle Scholar
  5. 5.
    Eppstein, D.: The topology of bendless three-dimensional orthogonal graph drawing. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 78–89. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Eppstein, D., Mumford, E.: Steinitz theorems for orthogonal polyhedra (December 2009) arXiv:0912.0537Google Scholar
  7. 7.
    Ferri, M., Gagliardi, C., Grasselli, L.: A graph-theoretical representation of pl-manifolds—a survey on crystallizations. Aequationes Math. 31(2-3), 121–141 (1986)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Ivanov, S.V.: The computational complexity of basic decision problems in 3-dimensional topology. Geom. Dedicata 131, 1–26 (2008), MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Keszegh, B., Pach, J., Pálvölgyi, D., Tóth, G.: Drawing cubic graphs with at most five slopes. Comput. Geom. 40(2), 138–147 (2008), MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Richter, D.A.: Ghost symmetry and an analogue of Steinitz’s theorem. Contrib. Alg. Geom. ( to appear, 2010)Google Scholar
  11. 11.
    Richter-Gebert, J.: Realization Spaces of Polytopes. Lecture Notes in Mathematics, vol. 1643. Springer, Heidelberg (1996)MATHGoogle Scholar
  12. 12.
    Richter-Gebert, J., Kortenkamp, U.H.: The interactive geometry software Cinderella. Springer-Verlag, Heidelberg (1999); with 1 CD-ROM (Windows, MacOS, UNIX and JAVA-1.1 platform)Google Scholar
  13. 13.
    Tutte, W.T.: Graph Theory, Encyclopedia of Mathematics and its Applications, vol. 21. Addison-Wesley Publishing Company, Menlo Park (1984)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • David A. Richter
    • 1
  1. 1.Western Michigan UniversityKalamazooUSA

Personalised recommendations