Advertisement

Improving Layered Graph Layouts with Edge Bundling

  • Sergey Pupyrev
  • Lev Nachmanson
  • Michael Kaufmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6502)

Abstract

We show how to improve the Sugiyama scheme by edge bundling. Our method modifies the layout produced by the Sugiyama scheme by bundling some of the edges together. The bundles are created by a new algorithm based on minimizing the total ink needed to draw the graph edges. We give several implementations that vary in quality of the resulting layout and execution time. To diminish the number of edge crossings inside of the bundles we apply a metro-line crossing minimization technique. The method preserves the Sugiyama style of the layout and creates a more readable view of the graph.

Keywords

Layered Graph Virtual Node Original Node Compatible Pair Graph Layout 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Argyriou, E., Bekos, M.A., Kaufmann, M., Symvonis, A.: Two polynomial time algorithms for the metro-line crossing minimization problem. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 336–347. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Bekos, M.A., Kaufmann, M., Potika, K., Symvonis, A.: Line crossing minimization on metro maps. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 231–242. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Cui, W., Zhou, H., Qu, H., Wong, P.C., Li, X.: Geometry-based edge clustering for graph visualization. IEEE Transactions on Visualization and Computer Graphics 14, 1277–1284 (2008)CrossRefGoogle Scholar
  4. 4.
    Eades, P., Sugiyama, K.: How to draw a directed graph. Journal of Information Processing 14(4), 424–437 (1990)zbMATHGoogle Scholar
  5. 5.
    Eiglsperger, M., Siebenhaller, M., Kaufmann, M.: An efficient implementation of sugiyamas algorithm for layered graph drawing. Journal of Graph Algorithms and Applications 9(3), 305–325 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Eppstein, D., Goodrich, M.T., Meng, J.Y.: Confluent layered drawings. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 184–194. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Gansner, E.R., Koren, Y.: Improved circular layouts. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 386–398. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  8. 8.
    Gansner, E.R., Koutsofios, E., North, S.C., Vo, K.-P.: A technique for drawing directed graphs. IEEE Transactions on Software Engineering 19(3), 214–230 (1993)CrossRefGoogle Scholar
  9. 9.
    Holten, D.: Hierarchical edge bundles: Visualization of adjacency relations in hierarchical data. IEEE Transactions on Visualization and Computer Graphics 12(5), 741–748 (2006)CrossRefGoogle Scholar
  10. 10.
    Holten, D., van Wijk, J.J.: Force-directed edge bundling for graph visualization. In: Computer Graphics Forum, vol. 28, pp. 983–990 (2009)Google Scholar
  11. 11.
    Lancichinetti, A., Fortunato, S., Radicchi, F.: Benchmark graphs for testing community detection algorithms. Physical Review E 80(1) (2008)Google Scholar
  12. 12.
    Nachmanson, L., Robertson, G., Lee, B.: Drawing graphs with GLEE. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 389–394. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  13. 13.
    Newbery, F.J.: Edge concentration: A method for clustering directed graphs. In: Proc. 2nd Int. Workshop on Software Configuration Management, pp. 76–85 (1989)Google Scholar
  14. 14.
    Sugiyama, K., Tagawa, S., Toda, M.: Methods for visual understanding of hierarchical system structures. IEEE Trans. on Systems, Man, and Cybernetics 11(2), 109–125 (1981)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Tufte, E.R.: The Visual Display of Quantitative Information. Graphics Press, CT (1983)Google Scholar
  16. 16.
    The AT&T graph collection. http://www.graphdrawing.org.
  17. 17.

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Sergey Pupyrev
    • 1
  • Lev Nachmanson
    • 2
  • Michael Kaufmann
    • 3
  1. 1.Ural State UniversityRussia
  2. 2.Microsoft ResearchUSA
  3. 3.Universität TübingenGermany

Personalised recommendations