GD 2010: Graph Drawing pp 317-328

# Point-Set Embeddings of Plane 3-Trees

(Extended Abstract)
• Rahnuma Islam Nishat
• Debajyoti Mondal
• Md. Saidur Rahman
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6502)

## Abstract

A straight-line drawing of a plane graph G is a planar drawing of G, where each vertex is drawn as a point and each edge is drawn as a straight-line segment. Given a set S of n points on the Euclidean plane, a point-set embedding of a plane graph G with n vertices on S is a straight-line drawing of G, where each vertex of G is mapped to a distinct point of S. The problem of deciding if G admits a point-set embedding on S is NP-complete in general and even when G is 2-connected and 2-outerplanar. In this paper we give an O(n 2logn) time algorithm to decide whether a plane 3-tree admits a point-set embedding on a given set of points or not, and find an embedding if it exists. We prove an Ω(n logn) lower bound on the time complexity for finding a point-set embedding of a plane 3-tree. Moreover, we consider a variant of the problem where we are given a plane 3-tree G with n vertices and a set S of k > n points, and give a polynomial time algorithm to find a point-set embedding of G on S if it exists.

### Keywords

Point-set embedding Plane 3-tree Lower bound

### References

1. 1.
de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications. Springer, Heidelberg (2000)
2. 2.
Biedl, T., Velázquez, L.E.R.: Drawing planar 3-trees with given face-areas. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 316–322. Springer, Heidelberg (2010)
3. 3.
Bose, P.: On embedding an outer-planar graph in a point set. Computational Geometry - Theory and Applications 23(3), 303–312 (2002)
4. 4.
Cabello, S.: Planar embeddability of the vertices of a graph using a fixed point set is NP-hard. Journal of Graph Algorithms and Applications 10(2), 353–363 (2006)
5. 5.
Chan, T.M.: Optimal output-sensitive convex hull algorithms in two and three dimensions. Discrete & Computational Geometry 16(4), 361–368 (1996)
6. 6.
de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10, 41–51 (1990)
7. 7.
García, A., Hurtado, F., Huemer, C., Tejel, J., Valtr, P.: On embedding triconnected cubic graphs on point sets. Electronic Notes in Discrete Mathematics 29, 531–538 (2007)
8. 8.
Ikebe, Y., Perles, M.A., Tamura, A., Tokunaga, S.: The rooted tree embedding problem into points in the plane. Discrete & Computational Geometry 11, 51–63 (1994)
9. 9.
Kaufmann, M., Wiese, R.: Embedding vertices at points: Few bends suffice for planar graphs. Journal of Graph Algorithms and Applications 6(1), 115–129 (2002)
10. 10.
Nishizeki, T., Rahman, M.S.: Planar Graph Drawing. World Scientific, Singapore (2004)
11. 11.
Pach, J., Gritzmann, P., Mohar, B., Pollack, R.: Embedding a planar triangulation with vertices at specified points. American Mathematical Monthly 98, 165–166 (1991)
12. 12.
Schnyder, W.: Embedding planar graphs on the grid. In: The first annual ACM-SIAM symposium on Discrete algorithms, pp. 138–148 (1990)Google Scholar