Complexity of Finding Non-Planar Rectilinear Drawings of Graphs

  • Ján Maňuch
  • Murray Patterson
  • Sheung-Hung Poon
  • Chris Thachuk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6502)

Abstract

We study the complexity of the problem of finding non-planar rectilinear drawings of graphs. This problem is known to be NP-complete. We consider natural restrictions of this problem where constraints are placed on the possible orientations of edges. In particular, we show that if each edge has prescribed direction “left”, “right”, “down” or “up”, the problem of finding a rectilinear drawing is polynomial, while finding such a drawing with the minimum area is NP-complete. When assigned directions are “horizontal” or “vertical” or a cyclic order of the edges at each vertex is specified, the problem is NP-complete. We show that these two NP-complete cases are fixed parameter tractable in the number of vertices of degree 3 or 4.

References

  1. 1.
    Didimo, W., Eades, P., Liotta, G.: Drawing graphs with right angle crossings. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 206–217. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Eades, P., Hong, S.-H., Poon, S.-H.: On rectilinear drawing of graphs. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 232–243. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  3. 3.
    Eppstein, D.: The topology of bendless three-dimensional orthogonal graph drawing. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 78–89. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  4. 4.
    Formann, M., Hagerup, T., Haralambides, J., Kaufmann, M., Leighton, F.T., Symvonis, A., Welzl, E., Woeginger, G.: Drawing graphs in the plane with high resolution. SIAM Journal on Computing 22(5), 1035–1052 (1993)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Garg, A., Tamassia, R.: On the computational complexity of upward and rectilinear planarity testing. SIAM Journal of Computing 31(2), 601–625 (2001)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Hoffman, F., Kriegel, K.: Embedding rectilinear graphs in linear time. Information Processing Letters 29(2), 75–79 (1988)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Huang, W., Hong, S., Eades, P.: Effects of crossing angles. In: Proc. of IEEE Pacific Visualization Symposium (PacificVis 2008), pp. 41–46 (2008)Google Scholar
  8. 8.
    Opatrny, J.: Total ordering problem. SIAM Journal of Computing 8(1), 111–114 (1979)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Papadimitriou, C.H.: Computational Complexity. Addison-Wesley, Reading (1994)MATHGoogle Scholar
  10. 10.
    Patrignani, M.: On the complexity of orthogonal compaction. Computational Geometry 19, 47–67 (2001)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Rahman, M.S., Egi, N., Nishizeki, T.: No-bend orthogonal drawings of subdivisions of planar triconnected cubic graphs. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 387–392. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Rahman, M.S., Egi, N., Nishizeki, T.: No-bend orthogonal drawings of series-parallel graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 409–420. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  13. 13.
    Rahman, M.S., Naznin, M., Nishizeki, T.: Orthogonal drawings of plane graphs without bends. Journal of Graph Algorithms and Applications 7(4), 335–362 (2003)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Vijayan, G., Wigderson, A.: Rectilinear graphs and their embeddings. SIAM Journal of Computing 14(2), 355–372 (1985)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ján Maňuch
    • 1
    • 2
  • Murray Patterson
    • 1
  • Sheung-Hung Poon
    • 3
  • Chris Thachuk
    • 1
  1. 1.Dept. of Computer ScienceUniversity of British ColumbiaVancouverCanada
  2. 2.Dept. of MathematicsSimon Fraser UniversityBurnabyCanada
  3. 3.Dept. of Computer ScienceNational Tsing Hua UniversityTaiwan, R.O.C.

Personalised recommendations