Drawing Planar Graphs of Bounded Degree with Few Slopes

  • Balázs Keszegh
  • János Pach
  • Dömötör Pálvölgyi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6502)

Abstract

We settle a problem of Dujmović, Eppstein, Suderman, and Wood by showing that there exists a function f with the property that every planar graph G with maximum degree d admits a drawing with noncrossing straight-line edges, using at most f(d) different slopes. If we allow the edges to be represented by polygonal paths with one bend, then 2d slopes suffice. Allowing two bends per edge, every planar graph with maximum degree d ≥ 3 can be drawn using segments of at most ⌈d/2⌉ different slopes. There is only one exception: the graph formed by the edges of an octahedron is 4-regular, yet it requires 3 slopes. These bounds cannot be improved.

Keywords

Graph drawing Slope number Planar graphs 

References

  1. 1.
    Barát, J., Matoušek, J., Wood, D.: Bounded-degree graphs have arbitrarily large geometric thickness. Electronic J. Combinatorics 13(1) (2006) R3Google Scholar
  2. 2.
    Biedl, T., Kant, G.: A better heuristic for orthogonal graph drawings, Comput. Comput. Geom. 9, 159–180 (1998)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice Hall, Upper Saddle River (1999)MATHGoogle Scholar
  4. 4.
    Dujmović, V., Eppstein, D., Suderman, M., Wood, D.R.: Drawings of planar graphs with few slopes and segments. Comput. Geom. 38(3), 194–212 (2007)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Dujmović, V., Suderman, M., Wood, D.R.: Graph drawings with few slopes. Comput. Geom. 38, 181–193 (2007)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Duncan, C.A., Eppstein, D., Kobourov, S.G.: The geometric thickness of low degree graphs. In: Proc. 20th ACM Symp. on Computational Geometry (SoCG 2004), pp. 340–346. ACM Press, New York (2004)Google Scholar
  7. 7.
    Engelstein, M.: Drawing graphs with few slopes, Research paper submitted to the Intel Competition for high school students, New York (October 2005)Google Scholar
  8. 8.
    Eppstein, D.: Separating thickness from geometric thickness. In: Pach, J. (ed.) Towards a Theory of Geometric Graphs, Contemporary Mathematics, Amer. Math. Soc., Providence, pp. 75–86 (2004)Google Scholar
  9. 9.
    Fáry, I.: On straight line representation of planar graphs. Acta Univ. Szeged. Sect. Sci. Math. 11, 229–233 (1948)MathSciNetGoogle Scholar
  10. 10.
    de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: On triangle contact graphs. Combinatorics, Probability and Computing 3, 233–246 (1994)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Garg, A., Tamassia, R.: Planar drawings and angular resolution: Algorithms and bounds. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 12–23. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  13. 13.
    Jelínek, V., Jelínková, E., Kratochvíl, J., Lidický, B., Tesař, M., Vyskočil, T.: The planar slope number of planar partial 3-trees of bounded degree. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, pp. 304–315. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  14. 14.
    Koebe, P.: Kontaktprobleme der konformen Abbildung. Berichte Verhand. Sächs. Akad. Wiss. Leipzig, Math.-Phys. Klasse 88, 141–164 (1936)Google Scholar
  15. 15.
    Keszegh, B., Pach, J., Plvlgyi, D., Tth, G.: Drawing cubic graphs with at most five slopes, Drawing cubic graphs with at most five slopes. Comput. Geom. 40(2), 138–147 (2008)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Lempel, A., Even, S., Cederbaum, I.: An algorithm for planarity testing of graphs. In: Rosenstiehl, P. (ed.) Theory of Graphs, pp. 215–232. Gordon and Breach, New York (1967)Google Scholar
  17. 17.
    Liu, Y., Morgana, A., Simeone, B.: General theoretical results on rectilinear embeddability of graphs. Acta Math. Appl. Sinica 7, 187–192 (1991)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Malitz, S., Papakostas, A.: On the angular resolution of planar graphs. SIAM J. Discrete Math. 7, 172–183 (1994)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Mukkamala, P., Szegedy, M.: Geometric representation of cubic graphs with four directions. Comput. Geom. 42, 842–851 (2009)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Pach, J., Pálvölgyi, D.: Bounded-degree graphs can have arbitrarily large slope numbers. Electronic J. Combinatorics 13(1) (2006) N1Google Scholar
  21. 21.
    Pach, J., Tóth, G.: Crossing number of toroidal graphs. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 334–342. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  22. 22.
    Ungar, P.: On diagrams representing maps. J. London Math. Soc. 28, 336–342 (1953)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Wade, G.A., Chu, J.H.: Drawability of complete graphs using a minimal slope set. The Computer J. 37, 139–142 (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Balázs Keszegh
    • 1
    • 3
  • János Pach
    • 1
    • 3
  • Dömötör Pálvölgyi
    • 1
    • 2
  1. 1.Ecole Politechnique Fédérale de Lausanne 
  2. 2.Eötvös UniversityBudapest
  3. 3.A. Rényi Institute of MathematicsBudapest

Personalised recommendations