On Touching Triangle Graphs

  • Emden R. Gansner
  • Yifan Hu
  • Stephen G. Kobourov
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6502)


In this paper, we consider the problem of representing graphs by triangles whose sides touch. We present linear time algorithms for creating touching triangles representations for outerplanar graphs, square grid graphs, and hexagonal grid graphs. The class of graphs with touching triangles representations is not closed under minors, making characterization difficult. We do show that pairs of vertices can only have a small common neighborhood, and we present a complete characterization of the subclass of biconnected graphs that can be represented as triangulations of some polygon.




  1. 1.
    de Berg, M., van Kreveld, M., Overmars, M.H., Schwarzkopf, O.: Computational Geometry: Algorithms and Applications, 2nd edn. Springer, Heidelberg (2000)CrossRefMATHGoogle Scholar
  2. 2.
    de Berg, M., Mumford, E., Speckmann, B.: On rectilinear duals for vertex-weighted plane graphs. Discrete Mathematics 309(7), 1794–1812 (2009)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Bern, M.: Triangulations. In: Goodman, J.E., O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry. CRC Press, Boca Raton (1997)Google Scholar
  4. 4.
    Bhasker, J., Sahni, S.: A linear algorithm to find a rectangular dual of a planar triangulated graph. Algorithmica 3, 247–278 (1988)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Brightwell, G.R., Scheinerman, E.R.: Representations of planar graphs. SIAM Journal on Discrete Mathematics 6(2), 214–229 (1993)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Buchsbaum, A.L., Gansner, E.R., Procopiuc, C.M., Venkatasubramanian, S.: Rectangular layouts and contact graphs. ACM Transactions on Algorithms 4(1) (2008)Google Scholar
  7. 7.
    de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: On triangle contact graphs. Combinatorics, Probability and Computing 3, 233–246 (1994)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    de Fraysseix, H., de Mendez, P.O., Rosenstiehl, P.: Representation of planar hypergraphs by contacts of triangles. In: Hong, S.-H., Nishizeki, T., Quan, W. (eds.) GD 2007. LNCS, vol. 4875, pp. 125–136. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  9. 9.
    de Fraysseix, H., Pach, J., Pollack, R.: Small sets supporting Fary embeddings of planar graphs. In: 20th Symposium on Theory of Computing (STOC), pp. 426–433 (1988)Google Scholar
  10. 10.
    Gansner, E., Hu, Y., Kaufmann, M., Kobourov, S.: Optimal polygonal representation of planar graphs. In: 9th LATIN Sympoisum, pp. 417–432 (2010)Google Scholar
  11. 11.
    Harary, F.: Graph Theory. Addison-Wesley, Reading (1972)MATHGoogle Scholar
  12. 12.
    He, X.: On finding the rectangular duals of planar triangular graphs. SIAM Journal of Computing 22(6), 1218–1226 (1993)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    He, X.: On floor-plan of plane graphs. SIAM Journal of Computing 28(6), 2150–2167 (1999)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Hopcroft, J., Tarjan, R.E.: Efficient planarity testing. Journal of the ACM 21(4), 549–568 (1974)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kant, G.: Hexagonal grid drawings. In: 18th Workshop on Graph-Theoretic Concepts in Computer Science, pp. 263–276 (1992)Google Scholar
  16. 16.
    Koebe, P.: Kontaktprobleme der konformen Abbildung. Berichte über die Verhandlungen der Sächsischen Akademie der Wissenschaften zu Leipzig. Math.-Phys. Klasse 88, 141–164 (1936)MATHGoogle Scholar
  17. 17.
    Liao, C.C., Lu, H.I., Yen, H.C.: Compact floor-planning via orderly spanning trees. Journal of Algorithms 48, 441–451 (2003)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Rahman, M., Nishizeki, T., Ghosh, S.: Rectangular drawings of planar graphs. Journal of Algorithms 50(1), 62–78 (2004)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Steinitz, E., Rademacher, H.: Vorlesungen über die Theorie der Polyeder. Springer, Berlin (1934)MATHGoogle Scholar
  20. 20.
    Thomassen, C.: Plane representations of graphs. In: Bondy, J.A., Murty, U.S.R. (eds.) Progress in Graph Theory, pp. 43–69. Academic Press, Canada (1984)Google Scholar
  21. 21.
    Ungar, P.: On diagrams representing maps. Journal of the London Mathematical Society 28, 336–342 (1953)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Emden R. Gansner
    • 1
  • Yifan Hu
    • 1
  • Stephen G. Kobourov
    • 2
  1. 1.AT&T Labs - ResearchFlorham Park
  2. 2.University of ArizonaTucson

Personalised recommendations