Advertisement

Lombardi Drawings of Graphs

  • Christian A. Duncan
  • David Eppstein
  • Michael T. Goodrich
  • Stephen G. Kobourov
  • Martin Nöllenburg
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6502)

Abstract

We introduce the notion of Lombardi graph drawings, named after the American abstract artist Mark Lombardi. In these drawings, edges are represented as circular arcs rather than as line segments or polylines, and the vertices have perfect angular resolution: the edges are equally spaced around each vertex. We describe algorithms for finding Lombardi drawings of regular graphs, graphs of bounded degeneracy, and certain families of planar graphs.

Keywords

Planar Graph Regular Graph Angular Resolution Hamiltonian Cycle Hyperbolic Plane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Aichholzer, O., Aigner, W., Aurenhammer, F., Dobiášová, K.Č., Jüttler, B.: Arc triangulations. In: Proc. 26th Eur. Worksh. Comp. Geometry (EuroCG 2010), Dortmund, Germany, pp. 17–20 (2010)Google Scholar
  2. 2.
    Alon, N.: A simple algorithm for edge-coloring bipartite multigraphs. Information Processing Letters 85(6), 301–302 (2003), doi:10.1016/S0020-0190(02)00446-5MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Baur, M., Brandes, U.: Crossing reduction in circular layouts. In: Hromkovič, J., Nagl, M., Westfechtel, B. (eds.) WG 2004. LNCS, vol. 3353, pp. 332–343. Springer, Heidelberg (2004), http://www.springerlink.com/content/fepu2a3hd195ffjg/ CrossRefGoogle Scholar
  4. 4.
    Biedl, T.C., Bose, P., Demaine, E.D., Lubiw, A.: Efficient algorithms for Petersen’s matching theorem. J. Algorithms 38(1), 110 (2001), doi:10.1006/jagm.2000.1132MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Brandes, U., Schlieper, B.: Angle and distance constraints on tree drawings. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 54–65. Springer, Heidelberg (2007), doi:10.1007/978-3-540-70904-6_7CrossRefGoogle Scholar
  6. 6.
    Brandes, U., Shubina, G., Tamassia, R.: Improving angular resolution in visualizations of geographic networks. In: Data Visualization 2000. Proc. 2nd Eurographics/IEEE TCVG Symp. Visualization (VisSym 2000), pp. 23–32. Springer, Heidelberg (2000)Google Scholar
  7. 7.
    Brandes, U., Wagner, D.: Using graph layout to visualize train interconnection data. J. Graph Algorithms Appl. 4(3), 135–155 (2000)CrossRefzbMATHGoogle Scholar
  8. 8.
    Cheng, C.C., Duncan, C.A., Goodrich, M.T., Kobourov, S.G.: Drawing planar graphs with circular arcs. Discrete Comput. Geom. 25(3), 405–418 (2001), doi:10.1007/s004540010080MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cole, R., Ost, K., Schirra, S.: Edge-coloring bipartite multigraphs in O(E log D) time. Combinatorica 21(1), 5–12 (2001), doi:10.1007/s004930170002MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    di Battista, G., Vismara, L.: Angles of planar triangular graphs. SIAM J. Discrete Math. 9(3), 349 (1996), doi:10.1137/S0895480194264010MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.: Lombardi Drawings of Graphs. (September 2010) ArXiv e-prints, arXiv:1009.0579Google Scholar
  12. 12.
    Duncan, C.A., Eppstein, D., Goodrich, M.T., Kobourov, S.G., Nöllenburg, M.: Drawing trees with perfect angular resolution and polynomial area. In: Proc. 18th Int. Symp. on Graph Drawing (GD 2010), Springer, Heidelberg (2010)Google Scholar
  13. 13.
    Efrat, A., Erten, C., Kobourov, S.G.: Fixed-location circular arc drawing of planar graphs. J. Graph Algorithms Appl. 11(1), 145–164 (2007), http://jgaa.info/accepted/2007/EfratErtenKobourov2007.11.1.pdf MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Finkel, B., Tamassia, R.: Curvilinear graph drawing using the force-directed method. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 448–453. Springer, Heidelberg (2005), doi:10.1007/978-3-540-31843-9_46CrossRefGoogle Scholar
  15. 15.
    Gabow, H.N.: Using Euler partitions to edge color bipartite multigraphs. Int. J. Parallel Programming 5(4), 345–355 (1976), doi:10.1007/BF00998632MathSciNetzbMATHGoogle Scholar
  16. 16.
    Gansner, E.R., Koren, Y.: Improved circular layouts. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 386–398. Springer, Heidelberg (2007), doi:10.1007/978-3-540-70904-6_37CrossRefGoogle Scholar
  17. 17.
    Garg, A., Tamassia, R.: Planar drawings and angular resolution: algorithms and bounds. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 12–23. Springer, Heidelberg (1994), doi:10.1007/BFb0049393CrossRefGoogle Scholar
  18. 18.
    Gutwenger, C., Mutzel, P.: Planar polyline drawings with good angular resolution. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 167–182. Springer, Heidelberg (1999), doi:10.1007/3-540-37623-2_13CrossRefGoogle Scholar
  19. 19.
    Halin, R.: Über simpliziale Zerfällungen beliebiger (endlicher oder unendlicher) Graphen. Math. Ann. 156(3), 216–225 (1964), doi:10.1007/BF01363288MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Holm, J., de Lichtenberg, K., Thorup, M.: Poly-logarithmic deterministic fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity. J. ACM 48(4), 723–760 (2001), doi:10.1145/502090.502095MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16, 4–32 (1996), doi:10.1007/BF02086606MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Kőnig, D.: Gráfok és mátrixok. Matematikai és Fizikai Lapok 38, 116–119 (1931)Google Scholar
  23. 23.
    Lick, D.R., White, A.T.: K-degenerate graphs. Canad. J. Math. 22, 1082–1096 (1970), http://www.smc.math.ca/cjm/v22/p1082 MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Lombardi, M., Hobbs, R.: Mark Lombardi: Global Networks. Independent Curators (2003)Google Scholar
  25. 25.
    Malitz, S., Papakostas, A.: On the angular resolution of planar graphs. SIAM J. Discrete Math. 7(2), 172–183 (1994), doi:10.1137/S0895480193242931MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Morgan, F.: Soap bubbles in ℝ2 and in surfaces. Pacific J. Math. 165(2), 347–361 (1994), http://projecteuclid.org/euclid.pjm/1102621620 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Mulder, H.M.: Julius Petersen’s theory of regular graphs. Discrete Mathematics 100(1-3), 157–175 (1992), doi:10.1016/0012-365X(92)90639-WMathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Petersen, J.: Die Theorie der regulären Graphs. Acta Math. 15(1), 193–220 (1891), doi:10.1007/BF02392606MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Schrijver, A.: Bipartite edge coloring in Om) time. SIAM J. Comput. 28(3), 841–846 (1999), doi:10.1137/S0097539796299266MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Six, J.M., Tollis, I.G.: A framework for circular drawings of networks. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 107–116. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  31. 31.
    Thorup, M.: Near-optimal fully-dynamic graph connectivity. In: Proc. 32nd ACM Symp. Theory of Computing (STOC 2000), pp. 343–350 (2000), doi:10.1145/335305.335345Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Christian A. Duncan
    • 1
  • David Eppstein
    • 2
  • Michael T. Goodrich
    • 2
  • Stephen G. Kobourov
    • 3
  • Martin Nöllenburg
    • 2
  1. 1.Department of Computer ScienceLouisiana Tech. Univ.RustonUSA
  2. 2.Department of Computer ScienceUniversity of CaliforniaIrvineUSA
  3. 3.Department of Computer ScienceUniversity of ArizonaTucsonUSA

Personalised recommendations