Topology-Driven Force-Directed Algorithms

  • Walter Didimo
  • Giuseppe Liotta
  • Salvatore A. Romeo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6502)

Abstract

This paper studies the problem of designing graph drawing algorithms that guarantee good trade-offs in terms of number of edge crossings, crossing angle resolution, and geodesic edge tendency. It describes two heuristics designed within the topology-driven force-directed framework that combines two classical graph drawing approaches: the force-directed approach and a planarization-based approach (e.g., the topology-shape-metrics approach). An extensive experimental analysis on two different test suites of graphs shows the effectiveness of the proposed solutions for the optimization of some readability metrics.

References

  1. 1.
    Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassinari, E., Vargiu, F.: An experimental comparison of four graph drawing algorithms. Comput. Geom. 7, 303–325 (1997)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bertault, F.: A force-directed algorithm that preserves edge crossing properties. In: Kratochvíl, J. (ed.) GD 1999. LNCS, vol. 1731, pp. 351–358. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  3. 3.
    Bertolazzi, P., Di Battista, G., Didimo, W.: Computing orthogonal drawings with the minimum number of bends. IEEE Trans. on Computers 49(8), 826–840 (2000)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice-Hall, Upper Saddle River (1999)MATHGoogle Scholar
  5. 5.
    Didimo, W., Liotta, G., Romeo, S.A.: Graph visualization techniques for conceptual web site traffic analysis. In: PacificVis, pp. 193–200. IEEE, Los Alamitos (2010)Google Scholar
  6. 6.
    Didimo, W., Pizzonia, M.: Upward embeddings and orientations of undirected planar graphs. J. Graph Algorithms Appl. 7(2), 221–241 (2003)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Dunne, C., Shneiderman, B.: Improving graph drawing readability by incorporating readability metrics: A software tool for network analysts. Technical report (2009)Google Scholar
  8. 8.
    Dwyer, T.: Scalable, versatile and simple constrained graph layout. Comput. Graph. Forum 28(3), 991–998 (2009)CrossRefGoogle Scholar
  9. 9.
    Dwyer, T., Marriott, K., Schreiber, F., Stuckey, P.J., Woodward, M., Wybrow, M.: Exploration of networks using overview+detail with constraint-based cooperative layout. IEEE Trans. Vis. Comput. Graph. 14(6), 1293–1300 (2008)CrossRefGoogle Scholar
  10. 10.
    Dwyer, T., Marriott, K., Wybrow, M.: Topology preserving constrained graph layout. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 230–241. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  11. 11.
    Eades, P.: A heuristic for graph drawing. Congressus Numerantium 42, 149–160 (1984)MathSciNetGoogle Scholar
  12. 12.
    Finkel, B., Tamassia, R.: Curvilinear graph drawing using the force-directed method. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 448–453. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Fößmeier, U., Kaufmann, M.: Drawing high degree graphs with low bend numbers. In: Brandenburg, F.J. (ed.) GD 1995. LNCS, vol. 1027, pp. 254–266. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  14. 14.
    Garg, A., Tamassia, R.: A new minimum cost flow algorithm with applications to graph drawing. In: North, S.C. (ed.) GD 1996. LNCS, vol. 1190, pp. 201–216. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  15. 15.
    Gutwenger, C., Mutzel, P., Weiskircher, R.: Inserting an edge into a planar graph. Algorithmica 41(4), 289–308 (2005)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Hachul, S., Jünger, M.: Drawing large graphs with a potential-field-based multilevel algorithm. In: Pach, J. (ed.) GD 2004. LNCS, vol. 3383, pp. 285–295. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Hachul, S., Jünger, M.: Large-graph layout algorithms at work: An experimental study. J. Graph Algorithms Appl. 11(2), 345–369 (2007)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Huang, W.: Using eye tracking to investigate graph layout effects. In: APVIS, pp. 97–100 (2007)Google Scholar
  19. 19.
    Huang, W., Hong, S.-H., Eades, P.: Effects of crossing angles. In: PacificVis, pp. 41–46. IEEE, Los Alamitos (2008)Google Scholar
  20. 20.
    Kaufmann, M., Wagner, D. (eds.): Drawing Graphs. Springer, Heidelberg (2001)MATHGoogle Scholar
  21. 21.
    Purchase, H.C.: Which aesthetic has the greatest effect on human understanding? In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  22. 22.
    Purchase, H.C., Carrington, D.A., Allder, J.-A.: Empirical evaluation of aesthetics-based graph layout. Empirical Software Engineering 7(3), 233–255 (2002)CrossRefMATHGoogle Scholar
  23. 23.
    Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM Journal on Computing 16(3), 421–444 (1987)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Ware, C., Purchase, H.C., Colpoys, L., McGill, M.: Cognitive measurements of graph aesthetics. Information Visualization 1(2), 103–110 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Walter Didimo
    • 1
  • Giuseppe Liotta
    • 1
  • Salvatore A. Romeo
    • 1
  1. 1.Università di PerugiaItaly

Personalised recommendations