GD 2010: Graph Drawing pp 129-140

# Drawing Graphs in the Plane with a Prescribed Outer Face and Polynomial Area

• Erin W. Chambers
• David Eppstein
• Michael T. Goodrich
• Maarten Löffler
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6502)

## Abstract

We study the classic graph drawing problem of drawing a planar graph using straight-line edges with a prescribed convex polygon as the outer face. Unlike previous algorithms for this problem, which may produce drawings with exponential area, our method produces drawings with polynomial area. In addition, we allow for collinear points on the boundary, provided such vertices do not create overlapping edges. Thus, we solve an open problem of Duncan et al., which, when combined with their work, implies that we can produce a planar straight-line drawing of a combinatorially-embedded genus-g graph with the graph’s canonical polygonal schema drawn as a convex polygonal external face.

### References

1. 1.
Bárány, I., Rote, G.: Strictly convex drawings of planar graphs. Documenta Mathematica 11, 369–391, (2006) arXiv:cs/0507030 , http://www.math.uiuc.edu/documenta/vol-11/13.html
2. 2.
Becker, B., Hotz, G.: On the optimal layout of planar graphs with fixed boundary. SIAM J. Comput. 16(5), 946–972 (1987), doi:10.1137/0216061
3. 3.
Chrobak, M., Goodrich, M.T., Tamassia, R.: Convex drawings of graphs in two and three dimensions. In: Proc. 12th ACM Symp. Comput. Geom., pp. 319–328 (1996), doi:10.1145/237218.237401Google Scholar
4. 4.
Chrobak, M., Kant, G.: Convex grid drawings of 3-connected planar graphs. Internat. J. Comput. Geom. Appl. 7(3), 211–223 (1997), doi:10.1142/S0218195997000144
5. 5.
Chrobak, M., Payne, T.H.: A linear-time algorithm for drawing a planar graph on a grid. Inf. Proc. Lett. 54(4), 241–246 (1995), doi:10.1016/0020-0190(95)00020-D
6. 6.
Davidson, R., Harel, D.: Drawing graphs nicely using simulated annealing. ACM Trans. Graph. 15(4), 301–331 (1996), doi:10.1145/234535.234538
7. 7.
Dhandapani, R.: Greedy drawings of triangulations. Discrete Comput. Geom. 43(2), 375–392 (2010), doi:10.1007/s00454-009-9235-6
8. 8.
di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing. Prentice Hall, Upper Saddle River (1999)
9. 9.
Duncan, C.A., Goodrich, M.T., Kobourov, S.G.: Planar drawings of higher-genus graphs. In: Eppstein, D., Gansner, E.R. (eds.) GD 2009. LNCS, vol. 5849, Springer, Heidelberg (2010), doi:10.1007/978-3-642-11805-0_7Google Scholar
10. 10.
Fáry, I.: On straight-line representation of planar graphs. Acta Sci. Math. (Szeged) 11, 229–233 (1948)
11. 11.
de Fraysseix, H., Pach, J., Pollack, R.: How to draw a planar graph on a grid. Combinatorica 10(1), 41–51 (1990), doi:10.1007/BF02122694
12. 12.
Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement. Softw. Pract. Exp. 21(11), 1129–1164 (1991), doi:10.1002/spe.4380211102
13. 13.
Gajer, P., Goodrich, M.T., Kobourov, S.G.: A multi-dimensional approach to force-directed layouts of large graphs. Comput. Geom. Theory Appl. 29(1), 3–18 (2004), doi:10.1016/j.comgeo.2004.03.014
14. 14.
Kant, G.: Drawing planar graphs using the canonical ordering. Algorithmica 16(1), 4–32 (1996), doi:10.1007/BF02086606
15. 15.
Lazarus, F., Pocchiola, M., Vegter, G., Verroust, A.: Computing a canonical polygonal schema of an Orientable Triangulated Surface. In: Proc. 17th ACM Symp. Comput. Geom., pp. 80–89 (2001), doi:10.1145/378583.378630Google Scholar
16. 16.
Schnyder, W.: Embedding planar graphs on the grid. In: Proc. 1st ACM-SIAM Symp. Discrete Algorithms, pp. 138–148 (1990), http://portal.acm.org/citation.cfm?id=320191
17. 17.
Stein, S.K.: Convex maps. Proc. Amer. Math. Soc. 2(3), 464–466 (1951), doi:10.1090/S0002-9939-1951-0041425-5
18. 18.
Sugiyama, K., Misue, K.: Graph drawing by the magnetic spring model. J. Visual Lang. Comput. 6(3), 217–231 (1995), doi:10.1006/jvlc.1995.1013
19. 19.
Tutte, W.T.: Convex representations of graphs. Proc. London Math. Soc. 10(38), 304–320 (1960), doi:10.1112/plms/s3-10.1.304Google Scholar
20. 20.
Tutte, W.T.: How to draw a graph. Proc. London Math. Soc. 13(52), 743–768 (1963), doi:10.1112/plms/s3-13.1.743Google Scholar
21. 21.
Wagner, K.: Bemerkungen zum Vierfarbenproblem. Jber. Deutsch. Math.-Verein. 46, 26–32 (1936)

## Authors and Affiliations

• Erin W. Chambers
• 1
• David Eppstein
• 2
• Michael T. Goodrich
• 2
• Maarten Löffler
• 2
1. 1.Dept. of Math and Computer ScienceSaint Louis Univ.USA
2. 2.Computer Science Dept.University of CaliforniaIrvineUSA