Optimizing Regular Edge Labelings

  • Kevin Buchin
  • Bettina Speckmann
  • Sander Verdonschot
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6502)

Abstract

A regular edge labeling (REL) of an irreducible triangulation G uniquely defines a rectangular dual of G. Rectangular duals find applications in various areas: as floor plans of electronic chips, in architectural designs, as rectangular cartograms, or as treemaps. An irreducible triangulation can have many RELs and hence many rectangular duals. Depending on the specific application different duals might be desirable. In this paper we consider optimization problems on RELs and show how to find optimal or near-optimal RELs for various quality criteria. Furthermore, we give upper and lower bounds on the number of RELs.

References

  1. 1.
    Aarts, E., Korst, J., Michiels, W.: Simulated annealing. In: Search Methodologies, pp. 187–210. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Ackerman, E., Barequet, G., Pinter, R.Y.: A bijection between permutations and floorplans, and its applications. Disc. Appl. Math. 154(12), 1674–1684 (2006)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Aichholzer, O., Hackl, T., Vogtenhuber, B., Huemer, C., Hurtado, F., Krasser, H.: On the number of plane graphs. In: Proc. 17th SODA, pp. 504–513 (2006)Google Scholar
  4. 4.
    Amano, K., Nakano, S., Yamanaka, K.: On the number of rectangular drawings: Exact counting and lower and upper bounds. TR 2007-AL-115, IPSJ SIG (2007)Google Scholar
  5. 5.
    Avis, D., Fukuda, K.: Reverse search for enumeration. Disc. Appl. Math. 65(1), 21–46 (1996)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Bhasker, J., Sahni, S.: A linear algorithm to check for the existence of a rectangular dual of a planar triangulated graph. Networks 7, 307–317 (1987)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: The travelling salesman problem in bounded degree graphs. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4051, pp. 198–209. Springer, Heidelberg (2006)Google Scholar
  8. 8.
    Buchin, K., Knauer, C., Kriegel, K., Schulz, A., Seidel, R.: On the number of cycles in planar graphs. In: Lin, G. (ed.) COCOON 2007. LNCS, vol. 4598, pp. 97–107. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Buchin, K., Schulz, A.: On the number of spanning trees a planar graph can have. In: Proc. 18th ESA (to appear, 2010), arXiv/0912.0712 Google Scholar
  10. 10.
    Chung, F.R.K., Graham, R.L., Frankl, P., Shearer, J.B.: Some intersection theorems for ordered sets and graphs. J. Comb. Theory, Ser. A 43(1), 23–37 (1986)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Eppstein, D., Mumford, E.: Orientation-constrained rectangular layouts. In: Dehne, F., Gavrilova, M., Sack, J.-R., Tóth, C.D. (eds.) WADS 2009. LNCS, vol. 5664, pp. 49–60. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Eppstein, D., Mumford, E., Speckmann, B., Verbeek, K.: Area-universal rectangular layouts. In: Proc. 25th ACM Symp. Comp. Geom., pp. 267–276 (2009)Google Scholar
  13. 13.
    Felsner, S., Zickfeld, F.: On the number of planar orientations with prescribed degrees. Electron. J. Comb. 15(1), Research paper R77, 41 (2008)MathSciNetMATHGoogle Scholar
  14. 14.
    Fujimaki, R., Inoue, Y., Takahashi, T.: An asymptotic estimate of the numbers of rectangular drawings or floorplans. In: Proc. ISCAS, pp. 856–859 (2009)Google Scholar
  15. 15.
    Fusy, É.: Transversal structures on triangulations: A combinatorial study and straight-line drawings. Disc. Math. 309(7), 1870–1894 (2009)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Horn, R., Johnson, C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1985)CrossRefMATHGoogle Scholar
  17. 17.
    Kant, G., He, X.: Regular edge labeling of 4-connected plane graphs and its applications in graph drawing problems. TCS 172(1-2), 175-193 (1997)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Kirkpatrick, S.: Optimization by simulated annealing: Quantitative studies. J. Statistical Physics 34(5), 975–986 (1984)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Koźmiński, K., Kinnen, E.: Rectangular dual of planar graphs. Networks 5, 145–157 (1985)MathSciNetMATHGoogle Scholar
  20. 20.
    Minc, H.: Nonnegative Matrices. Wiley-Interscience, Hoboken (1988)MATHGoogle Scholar
  21. 21.
    Peuquet, D., Ci-Xiang, Z.: An algorithm to determine the directional relationship between arbitrarily-shaped polygons in the plane. Pattern Rec. 20(1), 65–74 (1987)CrossRefGoogle Scholar
  22. 22.
    Speckmann, B., van Kreveld, M., Florisson, S.: A linear programming approach to rectangular cartograms. In: Progress in Spatial Data Handling: Proc. 12th International Symposium on Spatial Data Handling, pp. 529–546 (2006)Google Scholar
  23. 23.
    van Kreveld, M., Speckmann, B.: On rectangular cartograms. Computational Geometry: Theory and Applications 37(3), 175–187 (2007)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Yeap, G.K.H., Sarrafzadeh, M.: Sliceable floorplanning by graph dualization. SIAM J. Discrete Mathematics 8(2), 258–280 (1995)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kevin Buchin
    • 1
  • Bettina Speckmann
    • 1
  • Sander Verdonschot
    • 2
  1. 1.Dep. of Mathematics and Computer ScienceTU EindhovenThe Netherlands
  2. 2.School of Computer ScienceCarleton UniversityCanada

Personalised recommendations