On the Numerical Simulation of Unsteady Solutions for the 2D Boussinesq Paradigm Equation

  • Christo I. Christov
  • Natalia Kolkovska
  • Daniela Vasileva
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6046)

Abstract

For the solution of the 2D Boussinesq Paradigm Equation (BPE) an implicit, unconditionally stable difference scheme with second order truncation error in space and time is designed. Two different asymptotic boundary conditions are implemented: the trivial one, and a condition that matches the expected asymptotic behavior of the profile at infinity. The available in the literature solutions of BPE of type of stationary localized waves are used as initial conditions for different phase speeds and their evolution is investigated numerically. We find that, the solitary waves retain their identity for moderate times; for larger times they either transform into diverging propagating waves or blow-up.

Keywords

Solitary Wave Phase Speed Boussinesq Equation Asymptotic Boundary Condition Unsteady Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boussinesq, J.V.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. Journal de Mathématiques Pures et Appliquées 17, 55–108 (1872)MathSciNetGoogle Scholar
  2. 2.
    Zabusky, N.J., Kruskal, M.D.: Interaction of ‘solitons’ in collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965)CrossRefMATHGoogle Scholar
  3. 3.
    Christov, C.I.: An energy-consistent Galilean-invariant dispersive shallow-water model. Wave Motion 34, 161–174 (2001)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Christou, M.A., Christov, C.I.: Fourier-Galerkin method for 2D solitons of Boussinesq equation. Math. Comput. Simul. 74, 82–92 (2007)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Choudhury, J., Christov, C.I.: 2D solitary waves of Boussinesq equation. In: ISIS Int. Symp. Interdisc. Sci., Natchitoches 2004, APS Conf. Proc., vol. 755, pp. 85–90 (2005)Google Scholar
  6. 6.
    Christov, C.I., Choudhury, J.: Perturbation solution for the 2D shallow-water waves. Mech. Res. Commun. (submitted)Google Scholar
  7. 7.
    Christov, C.I.: Numerical implementation of the asymptotic boundary conditions for steadily propagating 2d solitons of Boussinesq type equations. Math. Comp. Simulat. (accepted)Google Scholar
  8. 8.
    Chertock, A., Christov, C.I., Kurganov, A.: Central-upwind schemes for the Boussinesq paradigm equation. In: Proc. 4th Russian-German Advanced Research Workshop on Computational Science and High Performance Computing (2010) (accepted)Google Scholar
  9. 9.
    Kolkovska, N.: Two Families of Finite Difference Schemes for Multidimensional Boussinesq Equation. In: AIP Conference Series (accepted)Google Scholar
  10. 10.
    Christov, C.I., Velarde, M.G.: Inelastic interaction of Boussinesq solitons. J. Bifurcation & Chaos 4, 1095–1112 (1994)CrossRefMATHGoogle Scholar
  11. 11.
    van der Vorst, H.: Iterative Krylov methods for large linear systems. Cambridge Monographs on Appl. and Comp. Math. 13 (2009)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Christo I. Christov
    • 1
  • Natalia Kolkovska
    • 2
  • Daniela Vasileva
    • 2
  1. 1.Dept. of MathematicsLafayetteUSA
  2. 2.Institute of Mathematics and InformaticsBulgarian Acad. Sci.SofiaBulgaria

Personalised recommendations