Advertisement

Modeling of Species and Charge Transport in Li–Ion Batteries Based on Non-equilibrium Thermodynamics

  • Arnulf Latz
  • Jochen Zausch
  • Oleg Iliev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6046)

Abstract

In order to improve the design of Li ion batteries the complex interplay of various physical phenomena in the active particles of the electrodes and in the electrolyte has to be balanced. The separate transport phenomena in the electrolyte and in the active particle as well as their coupling due to the electrochemical reactions at the interfaces between the electrode particles and the electrolyte will influence the performance and the lifetime of a battery. Any modeling of the complex phenomena during the usage of a battery has therefore to be based on sound physical and chemical principles in order to allow for reliable predictions for the response of the battery to changing load conditions. We will present a modeling approach for the transport processes in the electrolyte and the electrodes based on non-equilibrium thermodynamics and transport theory. The assumption of local charge neutrality, which is known to be valid in concentrated electrolytes, is explicitly used to identify the independent thermodynamic variables and fluxes. The theory guarantees strictly positive entropy production. Differences to other theories will be discussed.

Keywords

Constitutive Relation Charge Transport Entropy Production Active Particle Nonequilibrium Thermodynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fuller, T.F., Doyle, M., Newman, J.: Simulation and optimization of the dual lithium ion insertion cell. J. Electrochem. Soc. 141, 1–10 (1994)CrossRefGoogle Scholar
  2. 2.
    Newman, J., Thomas-Alyea, K.E.: Electrochemical Systems. Wiley, Chichester (2004)Google Scholar
  3. 3.
    Thomas, K.E., Newman, J., Darling, R.M.: Mathematical modeling of lithium batteries. In: Schalkwijk, W.A., Scrosati, B. (eds.) Advances in Lithium-Ion Batteries, pp. 345–392. Kluwer, Dordrecht (2002)CrossRefGoogle Scholar
  4. 4.
    Botte, G.G., Subramanian, V.R., White, R.E.: Mathematical modeling of secondary lithium batteries. Electrochimica Acta 45, 2595–2609 (2000)CrossRefGoogle Scholar
  5. 5.
    Danilov, D., Notten, P.H.L.: Mathematical modelling of ionic transport in the electrolyte of li-ion batteries. Electrochimica Acta 53, 5569–5578 (2008)CrossRefGoogle Scholar
  6. 6.
    Olesen, L.H., Bazant, M.Z., Bruus, H.: Strongly nonlinear dynamics of electrolytes in large ac voltages. arXiv:0908.3501 (2009)Google Scholar
  7. 7.
    Wang, C.Y., Gu, W.B., Liaw, B.Y.: Micro-macroscopic coupled modeling of batteries and fuel cells. i. model development. J. Electrochem. Soc. 145, 3407–3417 (1998)CrossRefGoogle Scholar
  8. 8.
    Wang, C.W., Sastry, A.M.: Mesoscale modeling of li-ion polymer cell. J. Electrochem. Soc. 154, A1035–A1047 (2007)Google Scholar
  9. 9.
    Zausch, J., Latz, A., Schmidt, S., Less, G.B., Seo, J.H., Han, S., Sastry, A.M.: Micro-scale modeling of li-ion batteries; parameterization and validation (2010) (to be published)Google Scholar
  10. 10.
    Vetter, J., Novak, P., Wagner, M.R., Veit, C., Möller, K.-C., Besenhard, J.O., Winter, M., Wohlfahrt-Mehrens, M., Vogler, C., Hammouche, A.: Ageing mechanisms in lithium-ion batteries. J. Pow. Sources 147, 269–281 (2005)CrossRefGoogle Scholar
  11. 11.
    Landau, L.D., Lifshitz, E.M.: Electrodynamics of Continous Media. Pergamon, Oxford (1984)Google Scholar
  12. 12.
    de Groot, S., Mazur, P.: Non-Equilibrium Thermodynamics. Dover, New York (1984)zbMATHGoogle Scholar
  13. 13.
    Latz, A., Zausch, J.: Thermodynamic consistent transport theory of li ion batteries (2010, in print)Google Scholar
  14. 14.
    Liu, M.: Hydrodynamic theory of electromagnetic fields in continous media. Phys. Rev. Lett. 70, 3580–3583 (1993)CrossRefGoogle Scholar
  15. 15.
    Hansen, J.P., McDonald, I.R.: Theory of Simple Liquids. Academic Press, London (1986)zbMATHGoogle Scholar
  16. 16.
    Aouizerat-Elarby, A., Dez, H., Prevel, B., Jal, J., Bert, J., Dupuy-Philon, J.: Diffusion processes in LiCl, R H2O solutions. Journal of Molecular Liquids 84(3), 289–299 (2000)CrossRefGoogle Scholar
  17. 17.
    Doyle, M., Newman, J., Gozdz, A.S., Schmutz, C.N., Tarascon, J.M.: Comparison of modeling predictions with experimental data from plastic lithium ion cells. J. Electrochem. Soc. 143, 1890–1903 (1996)CrossRefGoogle Scholar
  18. 18.
    Latz, A., Zausch, J.: Mesoscopic modeling and simulation of charge and ion transport in li ion battery cells. In: Proceedings Dechema Conference on Materials for Energy (2010)Google Scholar
  19. 19.
    Popov, P., Vutov, Y., Margenov, S., Iliev, O.: Finite volume discretization of nonlinear diffusion in li-ion batteries. In: Dimov, I., Dimova, S., Kolkovska, N. (eds.) Numerical Methods and Applications. LNCS, vol. 6064. Springer, Heidelberg (to appear)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Arnulf Latz
    • 1
  • Jochen Zausch
    • 1
  • Oleg Iliev
    • 1
  1. 1.Fraunhofer Institut für Techno- und WirtschaftsmathematikKaiserslauternGermany

Personalised recommendations