Prosemantic Features for Content-Based Image Retrieval

  • Gianluigi Ciocca
  • Claudio Cusano
  • Simone Santini
  • Raimondo Schettini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6535)


We present here, an image description approach based on prosemantic features. The images are represented by a set of low-level features related to their structure and color distribution. Those descriptions are fed to a battery of image classifiers trained to evaluate the membership of the images with respect to a set of 14 overlapping classes. Prosemantic features are obtained by packing together the scores. To verify the effectiveness of the approach, we designed a target search experiment in which both low-level and prosemantic features are embedded into a content-based image retrieval system exploiting relevance feedback. The experiments show that the use of prosemantic features allows for a more successful and quick retrieval of the query images.


Support Vector Machine Image Retrieval Target Image Relevance Feedback Color Histogram 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brunelli, R., Mich, O.: Image retrieval by examples. IEEE Transactions on Multimedia 2(3), 164–171 (2000)CrossRefGoogle Scholar
  2. 2.
    Flickner, M., Sawhney, H., Niblack, W., Ashley, J., Huang, Q., Dom, B., Gorkani, M., Hafner, J., Lee, D., Petkovic, D., Steele, D., Yanker, P.: Query by image and video content: the QBIC system. IEEE Computer 28(9), 23–32 (1995)CrossRefGoogle Scholar
  3. 3.
    Gevers, T., Smeulders, A.: PicToSeek: combining color and shape invariant features for image retrieval. IEEE Transactions on Image Processing 9(1), 102–119 (2000)CrossRefGoogle Scholar
  4. 4.
    Smith, J.R., Chang, S.F.: VisualSEEk: a fully automated content-based image query system. In: Proceedings of the Fourth ACM International Conference on Multimedia, pp. 87–98 (1996)Google Scholar
  5. 5.
    Ciocca, G., Gagliardi, I., Schettini, R.: Quicklook2: An integrated multimedia system. Journal of Visual Languages & Computing 12(1), 81–103 (2001)CrossRefGoogle Scholar
  6. 6.
    Ahmad, I., Grosky, W.I.: Indexing and retrieval of images by spatial constraints. Journal of Visual Communication and Image Representation 14(3), 291–320 (2003)CrossRefGoogle Scholar
  7. 7.
    Smeulders, A.W.M., Worring, M., Santini, S., Gupta, A., Jain, R.: Content-based image retrieval at the end of the early years. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(12), 1349–1380 (2000)CrossRefGoogle Scholar
  8. 8.
    Zhou, X.S., Huang, T.S.: Relevance feedback in image retrieval: a comprehensive review. Multimedia Systems 8(6), 536–544 (2003)CrossRefGoogle Scholar
  9. 9.
    Lee, C.S., Ma, W.Y., Zhang, H.: Information embedding based on user’s relevance feedback for image retrieval. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 3846, pp. 294–304 (1999)Google Scholar
  10. 10.
    Datta, R., Li, J., Wang, J.Z.: Content-based image retrieval: approaches and trends of the new age. In: Proceedings of the 7th ACM SIGMM International Workshop on Multimedia Information Retrieval, pp. 253–262 (2005)Google Scholar
  11. 11.
    Fan, J., Gao, Y., Luo, H., Xu, G.: Automatic image annotation by using concept-sensitive salient objects for image content representation. In: Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 361–368 (2004)Google Scholar
  12. 12.
    Vailaya, A., Figueiredo, M., Jain, A., Zhang, H.J.: Image classification for content-based indexing. IEEE Transactions on Image Processing 10(1), 117–130 (2001)CrossRefzbMATHGoogle Scholar
  13. 13.
    Chen, X., Wang, J.Z.: Image categorization by learning and reasoning with regions. Journal of Machine Learningn Research 5, 913–939 (2004)MathSciNetGoogle Scholar
  14. 14.
    Chang, E., Kingshy, G., Sychay, G., Gang, W.: CBSA: content-based soft annotation for multimodal image retrieval using bayes point machines. IEEE Transactions on Circuits and Systems for Video Technology 13(1), 26–38 (2003)CrossRefGoogle Scholar
  15. 15.
    Smith, J.R., Naphade, M., Natsev, A.: Multimedia semantic indexing using model vectors. In: Proceedings of IEEE International Conference on Multimedia and Expo., pp. 445–448 (2003)Google Scholar
  16. 16.
    Lu, J., Ma, S.P., Zhang, M.: Automatic image annotation based on model space. In: Proceedings of IEEE International Conference on Natural Language Processing and Knowledge Engineering., pp. 455–460 (2005)Google Scholar
  17. 17.
    Wang, J.Z., Li, J., Wiederhold, G.: Simplicity: Semantics-sensitive integrated matching for picture libraries. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(9), 947–963 (2001)CrossRefGoogle Scholar
  18. 18.
    Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: A comprehensive study. International Journal of Computer Vision 73(2), 213–238 (2007)CrossRefGoogle Scholar
  19. 19.
    Wallraven, C., Caputo, B., Graf, A.: Recognition with local features: the kernel recipe. In: Proceedings of the Ninth IEEE International Conference on Computer Vision, vol. 1, pp. 257–264 (2003)Google Scholar
  20. 20.
    Grauman, K., Darrell, T.: The pyramid match kernel: discriminative classification with sets of image features. In: Proceedings of the Tenth IEEE International Conference on Computer Vision, vol. 2, pp. 1458–1465 (2005)Google Scholar
  21. 21.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  22. 22.
    Vedaldi, A.: Sift++ a lightweight c++ implementation of sift,
  23. 23.
    Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 2161–2168 (2006)Google Scholar
  24. 24.
    Vailaya, A., Jain, A., Zhang, H.J.: On image classification: city images vs. landscapes. Pattern Recognition 31(12), 1921–1935 (1998)CrossRefGoogle Scholar
  25. 25.
    Furht, B.: Content-based image indexing and retrieval. In: Handbook on Multimedia Computing. CRC Press, Inc., Boca Raton (1998)Google Scholar
  26. 26.
    Vogel, J., Schiele, B.: Semantic modeling of natural scenes for content-based image retrieval. International Journal of Computer Vision 72(2), 133–157 (2007)CrossRefGoogle Scholar
  27. 27.
    Schettini, R., Brambilla, C., Cusano, C., Ciocca, G.: Automatic classification of digital photographs based on decision forests. International Journal of Pattern Recognition and Artificial Intelligence 18(5), 819–845 (2004)CrossRefGoogle Scholar
  28. 28.
    Szummer, M., Picard, R.: Indoor-outdoor image classification. In: Proceedings of IEEE International Workshop on Content-Based Access of Image and Video Database, pp. 42–51 (1998)Google Scholar
  29. 29.
    Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines (2001) Software available at
  30. 30.
    Platt, J.C.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. In: Advances in Large Margin Classifiers, pp. 61–74 (1999)Google Scholar
  31. 31.
    Gunther, N.J., Beretta, G.: A benchmark for image retrieval using distributed systems over the internet: BIRDS-I. Technical Report HPL-2000-162, HP Labs, Palo Alto (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gianluigi Ciocca
    • 1
  • Claudio Cusano
    • 1
  • Simone Santini
    • 2
  • Raimondo Schettini
    • 1
  1. 1.Dipartimento di Informatica Sistemistica e ComunicazioneUniversità degli Studi di Milano-BicoccaMilanoItaly
  2. 2.Escuela Politécnica SuperiorUniversidad Autónoma de MadridMadridSpain

Personalised recommendations