Detection of 3D Spinal Geometry Using Iterated Marginal Space Learning

  • B. Michael Kelm
  • S. Kevin Zhou
  • Michael Suehling
  • Yefeng Zheng
  • Michael Wels
  • Dorin Comaniciu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6533)

Abstract

Determining spinal geometry and in particular the position and orientation of the intervertebral disks is an integral part of nearly every spinal examination with Computed Tomography (CT) and Magnetic Resonance (MR) imaging. It is particularly important for the standardized alignment of the scan geometry with the spine. In this paper, we present a novel method that combines Marginal Space Learning (MSL), a recently introduced concept for efficient discriminative object detection, with a generative anatomical network that incorporates relative pose information for the detection of multiple objects. It is used to simultaneously detect and label the intervertebral disks in a given spinal image volume. While a novel iterative version of MSL is used to quickly generate candidate detections comprising position, orientation, and scale of the disks with high sensitivity, the anatomical network selects the most likely candidates using a learned prior on the individual nine dimensional transformation spaces. Since the proposed approach is learning-based it can be trained for MR or CT alike. Experimental results based on 42 MR volumes show that our system not only achieves superior accuracy but also is the fastest system of its kind in the literature – on average, the spinal disks of a whole spine are detected in 11.5s with 98.6% sensitivity and 0.073 false positive detections per volume. An average position error of 2.4mm and angular error of 3.9° is achieved.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Boisvert, J., Cheriet, F., Pennec, X., Labelle, H., Ayache, N.: Geometric variability of the scoliotic spine using statistics on articulated shape models. IEEE Trans. Med. Imag. 27(4), 557–568 (2008)CrossRefGoogle Scholar
  2. 2.
    Corso, J.J., Alomari, R.S., Chaudhary, V.: Lumbar disc localization and labeling with a probabilistic model on both pixel and object features. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) MICCAI 2008, Part I. LNCS, vol. 5241, pp. 202–210. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  3. 3.
    Feng, S., Zhou, S., Good, S., Comaniciu, D.: Automatic fetal face detection from ultrasound volumes via learning 3D and 2D information. In: Proc. CVPR, pp. 2488–2495 (2009)Google Scholar
  4. 4.
    Georgescu, B., Zhou, X.S., Comaniciu, D., Gupta, A.: Database-guided segmentation of anatomical structures with complex appearance. In: Proc. CVPR, pp. 429–436 (2005)Google Scholar
  5. 5.
    Ionasec, R.I., Voigt, I., Georgescu, B., Wang, Y., Houle, H., Hornegger, J., Navab, N., Comaniciu, D.: Personalized modeling and assessment of the aortic-mitral coupling from 4D TEE and CT. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 767–775. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Karney, C.F.: Quaternions in molecular modeling. J. Molec. Graph. Modelling 25, 595–604 (2007)CrossRefGoogle Scholar
  7. 7.
    Kschischang, F.R., Frey, B.J., Loeliger, H.A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47(2), 498–519 (2001)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Pekar, V., Bystrov, D., Heese, H.S., Dries, S.P.M., Schmidt, S., Grewer, R., den Harder, C.J., Bergmans, R.C., Simonetti, A.W., van Muiswinkel, A.M.: Automated planning of scan geometries in spine MRI scans. In: Ayache, N., Ourselin, S., Maeder, A. (eds.) MICCAI 2007, Part I. LNCS, vol. 4791, pp. 601–608. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. 9.
    Pennec, X.: Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements. J. Math. Imag. Vis. 25(1), 127–154 (2006)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Schmidt, S., Kappes, J., Bergtholdt, M., Pekar, V., Dries, S., Bystrov, D., Schnörr, C.: Spine detection and labeling using a parts-based graphical model. In: Karssemeijer, N., Lelieveldt, B. (eds.) IPMI 2007. LNCS, vol. 4584, pp. 122–133. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Seifert, S., Barbu, A., Zhou, S.K., Liu, D., Feulner, J., Huber, M., Sühling, M., Cavallaro, A., Comaniciu, D.: Hierarchical parsing and semantic navigation of full body ct data. In: Proc. SPIE Medical Imaging, pp. 725–732 (2009)Google Scholar
  12. 12.
    Seifert, S., Kelm, M., Möller, M., Mukherjee, S., Cavallaro, A., Huber, M., Comaniciu, D.: Semantic annotation of medical images. In: Proc. SPIE Medical Imaging. o.A. (2010)Google Scholar
  13. 13.
    Wels, M., Zheng, Y., Carneiro, G., Huber, M., Hornegger, J., Comaniciu, D.: Fast and robust 3-D MRI brain structure segmentation. In: Yang, G.-Z., Hawkes, D., Rueckert, D., Noble, A., Taylor, C. (eds.) MICCAI 2009. LNCS, vol. 5762, pp. 575–583. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans. Med. Imag. 27(11), 1668–1681 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • B. Michael Kelm
    • 1
  • S. Kevin Zhou
    • 2
  • Michael Suehling
    • 2
  • Yefeng Zheng
    • 2
  • Michael Wels
    • 1
  • Dorin Comaniciu
    • 2
  1. 1.Corporate TechnologySiemens AGErlangenGermany
  2. 2.Siemens Corporate ResearchPrincetonUSA

Personalised recommendations