Ternary Data Hiding Technique for JPEG Steganography

  • Vasily Sachnev
  • Hyoung-Joong Kim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6526)


In this paper we present JPEG steganography method based on hiding data to the stream of ternary coefficients. In the proposed method each nonzero DCT coefficient is converted to the corresponding ternary coefficient. The block of 3 m  − 1 ternary coefficients is used for hiding m ternary messages by modifying one or two coefficients. Due to higher information density of the ternary coefficients, the proposed method has many solutions for hiding necessary data. Such a big choice enables to choose coefficients with lowest distortion impact. As a result, the proposed methods have better data hiding performance compared to the existing steganographic methods based on hiding data to stream of binary coefficients like matrix encoding (F5) and modified matrix encoding (MME). The proposed methods were tested with steganalysis method proposed by T. Pevny and J.Fridrich. The experimental results show that the proposed method has less detectability compared to MME (modified matrix encoding).


Data Hiding Stego Image JPEG Image Hide Message Steganographic Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chandramouli, R., Kharrazi, M., Memon, N.D.: Image steganography and steganalysis: Concepts and practice. In: Kalker, T., Cox, I., Ro, Y.M. (eds.) IWDW 2003. LNCS, vol. 2939, pp. 35–49. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Eggers, J., Bauml, R., Girod, B.: A communications approach to steganography. In: SPIE, Electronic Imaging, Security, and Watermarking of Multimedia Contents, San Jose, CA (2002)Google Scholar
  3. 3.
    Farid, H., Lyu, S.: Steganalysis using higher-order image statistics. IEEE Transactions on Information Forensics and Security, 111–119 (2006)Google Scholar
  4. 4.
    Farid, H., Siwei, L.: Detecting hidden messages using higher-order statistics and support vector machines. In: Petitcolas, F.A.P. (ed.) IH 2002. LNCS, vol. 2578, Springer, Heidelberg (2003)Google Scholar
  5. 5.
    Fridrich, J.: Minimizing the embedding impact in steganography. In: Proceedings ACM Multimedia and Security Workshop, Geneva, Switzerland, pp. 2–10 (2006)Google Scholar
  6. 6.
    Fridrich, J.: Feature-based steganalysis for JPEG images and its implications for future design of steganographic schemes. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 67–81. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Fridrich, J., Filler, T.: Practical methods for minimizing embedding impact in steganography. In: Proceedings SPIE Electronic Imaging, Security, Steganography, and Watermarking of Multimedia Contents IX, San Jose, CA, vol. 6505, pp. 2–3 (2007)Google Scholar
  8. 8.
    Hetzl, S., Mutzel, P.: A graph–theoretic approach to steganography. In: Dittmann, J., Katzenbeisser, S., Uhl, A. (eds.) CMS 2005. LNCS, vol. 3677, pp. 119–128. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Kim, Y.H., Duric, Z., Richards, D.: Modified matrix encoding technique for minimal distortion steganography. In: Camenisch, J.L., Collberg, C.S., Johnson, N.F., Sallee, P. (eds.) IH 2006. LNCS, vol. 4437, pp. 314–327. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Lee, K., Westfeld, A.: Generalised category attack—improving histogram-based attack on JPEG LSB embedding. In: Furon, T., Cayre, F., Doërr, G., Bas, P. (eds.) IH 2007. LNCS, vol. 4567, pp. 378–391. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  11. 11.
    Noda, H., Niimi, M., Kawaguchi, E.: Application of QIM with dead zone for histogram preserving JPEG steeganography. In: Processing ICIP, Genova, Italy (2005)Google Scholar
  12. 12.
    Pevny, T., Fridrich, J.: Merging Markov and DCT features for multi-class JPEG steganalysis. SPIE, San Jose (2007)CrossRefGoogle Scholar
  13. 13.
    Provos, N.: Defending against statistical steganalysis. In: 10th USENIX Security Symposium, Washington, DC (2001)Google Scholar
  14. 14.
    Sachnev, V., Kim, H.J., Zhang, R., Choi, Y.S.: A Novel Approach for JPEG steganography. In: Kim, H.-J., Katzenbeisser, S., Ho, A.T.S. (eds.) IWDW 2008. LNCS, vol. 5450, pp. 209–217. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. 15.
    Sallee, P.: Model-based steganography. In: Kalker, T., Cox, I., Ro, Y.M. (eds.) IWDW 2003. LNCS, vol. 2939, pp. 154–167. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Sallee, P.: Model-based methods for steganography and steganalysis. International Journal of Image Graphics, 167–190 (2005)Google Scholar
  17. 17.
    Solanki, K., Sarkar, A., Manjunath, B.S.: YASS: Yet another steganographic scheme that resists blind steganalysis. In: Furon, T., Cayre, F., Doërr, G., Bas, P. (eds.) IH 2007. LNCS, vol. 4567, pp. 16–31. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Westfeld, A.: High capacity despite better steganalysis (F5—a steganographic algorithm). In: Moskowitz, I.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 289–302. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Xuan, G., Shi, Y.Q., Gao, J., Zou, D., Yang, C., Zhang, Z., Chai, P., Chen, C.-H., Chen, W.: Steganalysis based on multiple features formed by statistical moments of wavelet characteristic functions. In: Barni, M., Herrera-Joancomartí, J., Katzenbeisser, S., Pérez-González, F. (eds.) IH 2005. LNCS, vol. 3727, pp. 262–277. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Vasily Sachnev
    • 1
  • Hyoung-Joong Kim
    • 1
  1. 1.Center of Information Security Technologies, Graduate School of Information Security and ManagementKorea UniversitySeoulKorea

Personalised recommendations