Tampered Region Localization of Digital Color Images Based on JPEG Compression Noise

  • Wei Wang
  • Jing Dong
  • Tieniu Tan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6526)

Abstract

With the availability of various digital image edit tools, seeing is no longer believing. In this paper, we focus on tampered region localization for image forensics. We propose an algorithm which can locate tampered region(s) in a lossless compressed tampered image when its unchanged region is output of JPEG decompressor. We find the tampered region and the unchanged region have different responses for JPEG compression. The tampered region has stronger high frequency quantization noise than the unchanged region. We employ PCA to separate different spatial frequencies quantization noises, i.e. low, medium and high frequency quantization noise, and extract high frequency quantization noise for tampered region localization. Post-processing is involved to get final localization result. The experimental results prove the effectiveness of our proposed method.

Keywords

Image forensics Tampered region localization JPEG compression noise PCA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    CASIA Tampered Image Detection Evaluation Database (2010), http://forensics.idealtest.org
  2. 2.
    Dirik, A., Memon, N.: Image tamper detection based on demosaicing artifacts. In: IEEE International Conference onImage Processing (ICIP), pp. 1497–1500 (2009)Google Scholar
  3. 3.
    Feng, W., Liu, Z.-Q.: Region-level image authentication using bayesian structural content abstraction. IEEE Transactions on Image Processing 17(12), 2413–2424 (2008)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Haouzia, A., Noumeir, R.: Methods for image authentication: a survey. Multimedia Tools and Applications 39(1), 1–46 (2008)CrossRefGoogle Scholar
  5. 5.
    He, J., Lin, Z., Wang, L., Tang, X.: Detecting doctored JPEG images via DCT coefficient analysis. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 423–435. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  6. 6.
    Johnson, M.K., Farid, H.: Exposing digital forgeries by detecting inconsistencies in lighting. In: ACM Multimedia and Security Workshop, pp. 1–10 (2005)Google Scholar
  7. 7.
    Johnson, M.K., Farid, H.: Exposing digital forgeries in complex lighting environments. IEEE Transactions on Information Forensics and Security 2(3), 450–461 (2007)CrossRefGoogle Scholar
  8. 8.
    Krawetz, N.: A picture’s worth: Digital image analysis and forensics (August 2007), http://www.hackerfactor.com/
  9. 9.
    Lin, Z., He, J., Tang, X., Tang, C.K.: Fast, automatic and fine-grained tampered jpeg image detection via dct coefficient analysis. Pattern Recognition 42(11), 2492 (2009)CrossRefMATHGoogle Scholar
  10. 10.
    Lukáš, J., Fridrich, J., Goljan, M.: Detecting digital image forgeries using sensor pattern noise. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 6072, pp. 362–372 (February 2006)Google Scholar
  11. 11.
    Mahdian, B., Saic, S.: Blind authentication using periodic properties of interpolation. IEEE Transactions on Information Forensics and Security 3(3), 529–538 (2008)CrossRefGoogle Scholar
  12. 12.
    Mahdian, B., Saic, S.: Detecting double compressed jpeg images. In: IET Seminar Digests 2009, vol. (2), p. P12 (2009)Google Scholar
  13. 13.
    Ng, T., Chang, S., Lin, C., Sun, Q.: Passive-blind image forensics. In: Multimedia Security Technologies for Digital Rights, ch. 6. Elsevier, Amsterdam (2006)Google Scholar
  14. 14.
    Ng, T., Chang, S., Sun, Q.: A data set of authentic and spliced image blocks. Tech. rep., DVMM, Columbia University (2004), http://www.ee.columbia.edu/ln/dvmm/downloads/AuthSplicedDataSet/photographers.htm
  15. 15.
    Popescu, A.C., Farid, H.: Statistical tools for digital forensics. In: Fridrich, J. (ed.) IH 2004. LNCS, vol. 3200, pp. 128–147. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Popescu, A.C., Farid, H.: Exposing digital forgeries by detecting traces of resampling. IEEE Transactions on Signal Processing 53(2), 758–767 (2005)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Popescu, A.C., Farid, H.: Exposing digital forgeries in color filter array interpolated images. IEEE Transactions on Signal Processing 53(10), 3948–3959 (2005)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Shi, Y., Chen, C., Xuan, G.: Steganalysis versus splicing detection. In: Shi, Y.Q., Kim, H.-J., Katzenbeisser, S. (eds.) IWDW 2007. LNCS, vol. 5041, pp. 158–172. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  19. 19.
    Wang, W., Dong, J., Tan, T.: A survey of passive image tampering detection. In: Ho, A.T.S., Shi, Y.Q., Kim, H.J., Barni, M. (eds.) IWDW 2009. LNCS, vol. 5703, pp. 308–322. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  20. 20.
    Wang, W., Dong, J., Tan, T.: Effective image splicing detection based on image chroma. In: IEEE International Conference on Image Processing, pp. 1257–1260 (2009) (accepted)Google Scholar
  21. 21.
    Wang, W., Dong, J., Tan, T.: Image tampering detection based on stationary distribution of markov chain. In: IEEE International Conference on Image Processing (2010) (accepted)Google Scholar
  22. 22.
    Wikipedia: Principal component analysis — wikipedia, the free encyclopedia (2010), http://en.wikipedia.org/w/index.php?title=Principal_component_analysis&oldid=366194078 (accessed June 12, 2010)

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Wei Wang
    • 1
  • Jing Dong
    • 1
  • Tieniu Tan
    • 1
  1. 1.National Laboratory of Pattern RecognitionInstitute of Automation, Chinese Academy of SciencesBeijingP.R. China

Personalised recommendations