Advertisement

Recent Developments in Whole Sediment Toxicity Identification Evaluations: Innovations in Manipulations and Endpoints

  • Robert M. BurgessEmail author
  • Kay T. Ho
  • Adam D. Biales
  • Werner Brack
Chapter
Part of the The Handbook of Environmental Chemistry book series (HEC, volume 15)

Abstract

Whole sediment toxicity identification evaluation (TIE) methods were developed primarily in the late 1990s and early 2000s in research programs dedicated to developing manipulations and endpoints to characterize and identify causes of toxicity to benthic freshwater and marine organisms. The focus of these methods included nonionic organic contaminants, cationic and anionic metals, and ammonia. This chapter discusses innovations in whole sediment TIE manipulations and endpoints developed primarily over the last 10 years. Innovations such as the use of supercritical fluid extraction as a Phase III manipulation, Phase II methods for identifying pyrethroid, organophosphate, and carbamate pesticides, and the integration of genomic endpoints into the TIE structure are described. In North America, recently implemented environmental regulations require the diagnosis and identification of environmental stressors as part of the total maximum daily loading process. These regulations are likely to result in an increase in the conduct of whole sediments TIEs and encourage the development and application of more innovations.

Keywords

Bioavailability Genomics Pesticides Supercritical fluid extraction Toxicity identification evaluation Whole sediment 

Notes

Acknowledgments

The authors appreciate the insightful technical reviews provided by David Katz, Monique Perron, Jonathan Serbst, and Wayne Munns on this manuscript. This is NHEERL-AED, Narragansett Contribution AED-10-028. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. This report has been reviewed by the US EPAs Office of Research and Development National Health and Environmental Effects Research Laboratory, Atlantic Ecology Division, Narragansett, RI, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the Agency.

References

  1. 1.
    National Research Council (2001) A risk-management strategy for PCB-contaminated sediments. National Academy Press, Washington, DCGoogle Scholar
  2. 2.
    National Research Council (2003) Bioavailability of contaminants in soils and sediments: processes, tools and applications. National Academy Press, Washington, DCGoogle Scholar
  3. 3.
    Mount DI, Anderson-Carnahan L (1988) Methods for aquatic toxicity identification evaluations: Phase I toxicity characterization procedures (EPA/600-3-88/034). US EPA, Office of Research and Development, Duluth, MNGoogle Scholar
  4. 4.
    Mount DI, Anderson-Carnahan L (1989) Methods for aquatic toxicity identification evaluations: Phase II toxicity identification procedures (EPA/600-3-88/035). US EPA, Office of Research and Development, Duluth, MNGoogle Scholar
  5. 5.
    Norberg-King T, Mount DI, Durhan EJ, Ankley GT, Burkhard LP, Amato J, Lukasewycz M, Schubauer-Berigan MK, Anderson-Carnahan L (1991) Methods for aquatic toxicity identification evaluations: Phase I toxicity characterization procedures (EPA-699/6-91/003). US EPA, Office of Research and Development, Duluth, MNGoogle Scholar
  6. 6.
    Mount DI, Norberg-King T, Ankley G, Burkhard LP, Durhan EJ, Schubauer-Berigan MK, Lukasewycz M (1993) Methods for aquatic toxicity identification evaluations: Phase III toxicity confirmation procedures for samples exhibiting acute and chronic toxicity (EPA/600/R-92/081). US EPA, Office of Research and Development, Duluth, MNGoogle Scholar
  7. 7.
    Burgess RM, Ho KT, Morrison GE, Chapman G, Denton DL (1996) Marine toxicity identification evaluation (TIE) procedures manual: Phase I guidance document (600/R-96/054 USEPA). US EPA, Office of Research and Development, Washington, DCGoogle Scholar
  8. 8.
    Ankley G, Schubauer-Berigan M, Dierkes J, Lukasewycz M (1992) Sediment toxicity identification evaluation: Phase I (characterization), Phase II (identification) and Phase III (confirmation) modifications of effluent procedures Tech (EPA 08-91). US EPA, Office of Research and Development, Duluth, MNGoogle Scholar
  9. 9.
    Anderson B, Hunt J, Phillips B, Tjeerdema R (2006) Navigating the TMDL process: sediment toxicity (02-WSM-2). Water Environment Research Foundation, Alexandria, VAGoogle Scholar
  10. 10.
    Ho KT, Burgess RM, Mount DR, Norberg-King TJ, Hockett JR (2007) Sediment toxicity identification evaluation (TIE) Phases I, II and III: guidance document (EPA/600/R-07/080). US Environmental Protection Agency, Office of Research and Development, Washington, DCGoogle Scholar
  11. 11.
    Ho KT, Burgess RM (2009) Marine sediment toxicity identification evaluations (TIEs): history, principles, methods, and future research. In: Kassim TA, Barcelo D (eds) Handbook of environmental chemistry. Springer, BerlinGoogle Scholar
  12. 12.
    Science Applications International Corporation (2003) Guide for planning and conducting sediment pore water toxicity identification evaluations (TIE) to determine causes of acute toxicity at Navy aquatic sites (User’s Guide UG-2052-ENV). Prepared for Naval Facilities Engineering Service Center, Port Hueneme, CAGoogle Scholar
  13. 13.
    Hawthorne SB, Miller DJ, Burford MD, Langenfeld JJ, Eckert-Tilotta S, Louie PK (1993) Factors controlling quantitative supercritical fluid extraction of environmental samples. J Chromatogr 642:301–317CrossRefGoogle Scholar
  14. 14.
    Bjorklund E, Nilsson T, Bowadt S, Pilorz K, Mathiasson L, Hawthorne SB (2000) Introducing selective supercritical fluid extraction as a new tool for determining sorption/desorption behavior and bioavailability of persistent organic pollutants in sediment. J Biochem Biophys Methods 43:295–311CrossRefGoogle Scholar
  15. 15.
    Nilsson T, Sporring S, Bjorklund E (2003) Selective supercritical fluid extraction to estimate the fraction of PCB that is bioavailable to a benthic organism in a naturally contaminated sediment. Chemosphere 53:1049–1052CrossRefGoogle Scholar
  16. 16.
    Nilsson T, Bjorklund E (2005) Selective supercritical fluid extraction as a tool for determining the PCB fraction accessible for uptake by chironomid larvae in a limnic sediment. Chemosphere 53:141–146CrossRefGoogle Scholar
  17. 17.
    Nilsson T, Hakkinen J, Larsson P, Bjorklund E (2006) Selective supercritical fluid extraction to identify aged sediment-bound PCBs available for uptake by eel. Environ Pollut 140:87–94CrossRefGoogle Scholar
  18. 18.
    Hawthorne SB, Grabanski CB (2000) Correlating selective supercritical fluid extraction with bioremediation behavior of PAHs in a field treatment plot. Environ Sci Technol 34:4103–4110CrossRefGoogle Scholar
  19. 19.
    Hawthorne SB, Poppendieck DG, Grabanski CB, Loehr RC (2001) PAH release during water desorption, supercritical carbon dioxide extraction, and field bioremediation. Environ Sci Technol 35:4577–4583CrossRefGoogle Scholar
  20. 20.
    Hawthorne SB, Poppendieck DG, Grabanski CB, Loehr RC (2002) Comparing PAH availability from manufacturing gas plant soils and sediments with chemical and biological tests: 1. PAH release during water desorption and supercritical carbon dioxide extraction. Environ Sci Technol 36:4795–4803CrossRefGoogle Scholar
  21. 21.
    Hawthorne SB, Lanno R, Kreitinger JP (2005) Reduction in acute toxicity of soils to terrestrial oligochaetes following the removal of bioavailable polycyclic aromatic hydrocarbons with mild supercritical carbon dioxide extraction. Environ Toxicol Chem 24:1893–1895CrossRefGoogle Scholar
  22. 22.
    Burgess RM, Ho KT, Biales AD, Brack W (2011) Recent developments in whole sediment toxicity identification evaluations (TIEs): innovations in manipulations and endpoints. In: Brack W (ed) Effect directed analysis of complex environmental contamination: the handbook of environmental chemistry. Springer, Berlin.Google Scholar
  23. 23.
    Ho KT, Burgess RM, Pelletier MC, Serbst JR, Ryba SA, Cantwell MG, Kuhn A, Raczelowski P (2002) An overview of toxicant identification in sediments and dredged materials. Mar Pollut Bull 44:286–293CrossRefGoogle Scholar
  24. 24.
    Nimmo DR (1985) Pesticides. In: Rand GM, Petrocelli SR (eds) Fundamentals of aquatic toxicology. Hemisphere Publishing, New York, NYGoogle Scholar
  25. 25.
    Amweg EL, Weston DP, You J, Lydy MJ (2006) Pyrethroid insecticides and sediment toxicity in urban creeks from California and Tennessee. Environ Sci Technol 40:1700–1706CrossRefGoogle Scholar
  26. 26.
    Amweg EL, Weston DP (2007) Whole sediment toxicity identification evaluation tools for pyrethroid insecticides: 1. Piperonyl butoxide addition. Environ Toxicol Chem 26:2389–2396CrossRefGoogle Scholar
  27. 27.
    Phillips BM, Anderson BS, Hunt JW, Nicely PA, Kosaka RA, Tjeerdema RS, de Vlaming V, Richard N (2004) In situ water and sediment toxicity in an agricultural watershed. Environ Toxicol Chem 23:435–442CrossRefGoogle Scholar
  28. 28.
    Phillips BM, Anderson BS, Hunt JW, Huntley SA, Tjeerdema RS, Kapellas N, Worcester K (2006) Solid-phase sediment toxicity identification evaluation in an agricultural stream. Environ Toxicol Chem 25:1671–1676CrossRefGoogle Scholar
  29. 29.
    Amdour MO, Doull J, Klassen CD (1991) Casarett and Doull’s toxicology: the basic science of poisons. McGraw-Hill, New YorkGoogle Scholar
  30. 30.
    US Geological Survey (1999) The quality of our nation’s waters: nutrients and pesticides (Circular 1225). US Geological Survey, Reston, VAGoogle Scholar
  31. 31.
    Hyne RV, Pablo F, Aistrope M, Leonard AW, Ahmad N (2004) Comparison of time-integrated pesticide concentrations determined from field-deployed passive samplers with daily river-water extractions. Environ Toxicol Chem 23:2090–2098CrossRefGoogle Scholar
  32. 32.
    Kreuger J, Peterson M, Lundgren E (1999) Agricultural inputs of pesticide residues to stream and pond sediments in a small catchment in southern Sweden. Bull Environ Contam Toxicol 62:55–62CrossRefGoogle Scholar
  33. 33.
    Kronvang B, Laubel A, Larsen SE, Friberg N (2003) Pesticides and heavy metals in Danish streambed sediment. Hydrobiologia 494:93–101CrossRefGoogle Scholar
  34. 34.
    Anderson BS, Phillips BM, Hunt JW, Connor V, Richard N, Tjeerdema RS (2006) Identifying primary stressors impacting macroinvertebrates in the Salinas River (California, USA): relative effects of pesticides and suspended particles. Environ Pollut 141:402–408CrossRefGoogle Scholar
  35. 35.
    Anderson BS, Phillips BM, Hunt JW, Worcester K, Adams M, Kapellas N, Tjeerdema RS (2006) Evidence of pesticide impacts in the Santa Maria River watershed, California, USA. Environ Toxicol Chem 25:1160–1170CrossRefGoogle Scholar
  36. 36.
    Phillips BM, Anderson BS, Hunt JW, Tjeerdema RS, Carpio-Obeso M, Connor V (2007) Causes of water toxicity to Hyaella azteca in the New River, California, USA. Environ Toxicol Chem 26:1074–1079CrossRefGoogle Scholar
  37. 37.
    Holmes RW, Anderson BS, Phillips BM, Hunt JW, Crane DB, Mekebri A, Connor V (2008) Statewide investigation of the role of pyrethroid pesticides in sediment toxicity in California’s urban waterways. Environ Sci Technol 42:7003–7009CrossRefGoogle Scholar
  38. 38.
    Trimble AJ, Weston DP, Belden JB, Lydy MJ (2009) Identification and evaluation of pyrethroid insecticide mixtures in urban sediments. Environ Toxicol Chem 28:1687–1695CrossRefGoogle Scholar
  39. 39.
    Ankley GT, Collyard SA (1995) Influence of piperonyl butoxide on the toxicity of organophosphate insecticides to three species of freshwater benthic invertebrates. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 110:149–155CrossRefGoogle Scholar
  40. 40.
    Ankley GT, Dierkes JR, Jenson DA, Peterson GS (1991) Piperonyl butoxide as a tool in aquatic toxicological research with organophosphate insecticides. Ecotoxicol Environ Saf 21:266–274CrossRefGoogle Scholar
  41. 41.
    Bailey HC, Digiorgio C, Kroll K, Miller JL, Hinton DE, Starrett G (1996) Development of procedures for identifying pesticide toxicity in ambient waters: carbofuran, diazinon, chlorphyrifos. Environ Toxicol Chem 15:837–845CrossRefGoogle Scholar
  42. 42.
    Amweg EL, Weston DP, Johnson CS, You J, Lydy MJ (2006) Effect of piperonyl butoxide on permethrin toxicity in the amphipod Hyalella azteca. Environ Toxicol Chem 25:1817–1825CrossRefGoogle Scholar
  43. 43.
    Anderson BS, Phillips BM, Hunt JW, Voorhees J, Clark S, Mekebri A, Crane D, Tjeerdema RS (2008) Recent advances in sediment toxicity identification evaluations emphasizing pyrethroid pesticides. In: Gan J (ed) Synthethic pyrethroids: occurrence and behavior in aquatic environments. American Chemical Society, Washington, DCGoogle Scholar
  44. 44.
    Weston DP, Zhang M, Lydy MJ (2008) Identifying the cause and source of sediment toxicity in an agriculture-influenced creek. Environ Toxicol Chem 27:953–962CrossRefGoogle Scholar
  45. 45.
    Wheelock CE, Phillips BM, Anderson BS, Miller JL, Miller MJ, Hammock B (2008) Applications of carboxylesterase activity in environmental monitoring and toxicity identification evaluations (TIEs). In: Whitacre DM (ed) Reviews of environmental contamination and toxicology. Springer, New YorkGoogle Scholar
  46. 46.
    Wheelock CE, Miller JL, Miller MJ, Gee SJ, Shan G, Hammock B (2004) Development of toxicity identification evaluation procedures for pyrethroid detection using esterase activity. Environ Toxicol Chem 23:2699–2708CrossRefGoogle Scholar
  47. 47.
    Wheelock CE, Miller JL, Miller MJ, Phillips BM, Huntley SA, Gee SJ, Tjeerdema RS, Hammock BD (2006) Use of carboxylesterase activity to remove pyrethroid-associated toxicity to Ceriodaphia dubia and Hyalella azteca in toxicity identification evaluations. Environ Toxicol Chem 25:973–984CrossRefGoogle Scholar
  48. 48.
    Weston DP, Amweg EL (2007) Whole-sediment toxicity identification evaluation tools for pyrethorid insecticides: II. Esterase addition. Environ Toxicol Chem 26:2397–2404CrossRefGoogle Scholar
  49. 49.
    Gupta RC, Dettbarn WD (1993) Role of carboxylesterases in the prevention and potentiation of N-methylcarbamate toxicity. Chem Biol Interact 87:285–303CrossRefGoogle Scholar
  50. 50.
    Weston DP, Jackson CJ (2009) Use of engineered enzymes to identify organophosphate and pyrethroid-related toxicity in toxicity identification evaluations. Environ Sci Technol 43:5514–5520CrossRefGoogle Scholar
  51. 51.
    Lydy MJ, Belden JB, Ternes MA (1999) Effects of temperature on the toxicity of m-parathion, chloropyrifos and pentachlobenzene to Chironomus tentans. Arch Environ Contam Toxicol 37:542–547CrossRefGoogle Scholar
  52. 52.
    Harwood AD, You J, Lydy MJ (2009) Temperature as a toxicity identification evaluation tool for pyrethroid insecticides: toxicokinetic confirmation. Environ Toxicol Chem 28:1051–1058CrossRefGoogle Scholar
  53. 53.
    Cairns J Jr, Heath AG, Parker BC (1975) The effects of temperature upon the toxicity of chemicals to aquatic systems. Hydrobiologia 47:135–171CrossRefGoogle Scholar
  54. 54.
    Enan O, Gordon HT (1965) Temperature effects on toxicity of synergized carbamate insecticides on house flies. J Econ Entomol 58:513–516Google Scholar
  55. 55.
    Sparks TC, Shour MH, Wellemeyer EG (1982) Temperature-toxicity relationships of pyrethroids on three Lepidopterans. J Econ Entomol 75:643–646Google Scholar
  56. 56.
    Brown MA (1987) Temperature-dependent pyrethroid resistance in a pyrethroid-selected colony of Heliothis virescens. J Econ Entomol 80:330–332Google Scholar
  57. 57.
    Weston DP, You J, Harwood AD, Lydy MJ (2009) Whole sediment toxicity identification evaluation tools for pyrethroid insectides: III. Temperature manipulation. Environ Toxicol Chem 28:173–180CrossRefGoogle Scholar
  58. 58.
    Ankley GT, Daston GP, Degitz SJ, Denslow ND, Hoke RA, Kennedy SW, Miracle AL, Perkins EJ, Snape J, Tillitt DE, Tyler CR, Versteeg D (2006) Toxicogenomics in regulatory ecotoxicology. Environ Sci Technol 40:4055–4065CrossRefGoogle Scholar
  59. 59.
    Nash JP, Kime DE, Van der Ven LT, Wester PW, Brion F, Maack G, Stahlschmidt-Allner P, Tyler CR (2004) Long-term exposure to environmental concentrations of the pharmaceutical ethynylestradiol causes reproductive failure in fish. Environ Health Perspect 112:1725–1733CrossRefGoogle Scholar
  60. 60.
    Rose J, Holbech H, Lindholst C, Norum U, Povlsen A, Korsgaard B, Bjerregaard P (2002) Vitellogenin induction by 17beta-estradiol and 17alpha-ethinylestradiol in male zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol 131:531–539CrossRefGoogle Scholar
  61. 61.
    Snell TW, Brogdon SE, Morgan MB (2003) Gene expression profiling in ecotoxicology. Ecotoxicology 12:475–483CrossRefGoogle Scholar
  62. 62.
    Hamadeh HK, Bushel PR, Jayadev S, Martin K, DiSorbo O, Sieber S, Bennett L, Tennant R, Stoll R, Barrett JC, Blanchard K, Paules RS, Afshari CA (2002) Gene expression analysis reveals chemical-specific profiles. Toxicol Sci 67:219–231CrossRefGoogle Scholar
  63. 63.
    Apraiz I, Mi J, Cristobal S (2006) Identification of proteomic signatures of exposure to marine pollutants in mussels (Mytilus edulis). Mol Cell Proteomics 5:1274–1285CrossRefGoogle Scholar
  64. 64.
    Ramaswamy S, Tamayo P, Rifkin R, Mukherjee S, Yeang CH, Angelo M, Ladd C, Reich M, Latulippe E, Mesirov JP, Poggio T, Gerald W, Loda M, Lander ES, Golub TR (2001) Multiclass cancer diagnosis using tumor gene expression signatures. Proc Natl Acad Sci USA 98:15149–15154CrossRefGoogle Scholar
  65. 65.
    Meyer E, Aglyamova GV, Wang S, Buchanan-Carter J, Abrego D, Colbourne JK, Willis BL, Matz MV (2009) Sequencing and de novo analysis of a coral larval transcriptome using 454 GSFlx. BMC Genomics 10:219CrossRefGoogle Scholar
  66. 66.
    Unlu M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077CrossRefGoogle Scholar
  67. 67.
    US Environmental Protection Agency (1994) Methods for assessing the toxicity of sediment-associated contaminants with estuarine and marine amphipods (EPA 600/R-94/025). US EPA, Office of Research and Development, Narragansett, RIGoogle Scholar
  68. 68.
    American Society for Testing and Materials (2007) Standard test method for measuring the toxicity of sediment-associated contaminants with estuarine and marine invertebrates (E1367-03e1). ASTM International, West Conshohocken, PAGoogle Scholar
  69. 69.
    Pauwels M, Roosens N, Frerot H, Saumitou-Laprade P (2008) When population genetics serves genomics: putting adaptation back in a spatial and historical context. Curr Opin Plant Biol 11:129–134CrossRefGoogle Scholar
  70. 70.
    Redmond MS, Scott KJ, Swartz RC, Jones JKP (1994) Preliminary culture and life cycle experiments with the benthic amphipod Amplisca abdita. Environ Toxicol Chem 13:1355–1365Google Scholar
  71. 71.
    Whitehead A, Crawford DL (2005) Variation in tissue-specific gene expression among natural populations. Genome Biol 6:R13CrossRefGoogle Scholar
  72. 72.
    Whitehead A, Crawford DL (2006) Neutral and adaptive variation in gene expression. Proc Natl Acad Sci USA 103:5425–5430CrossRefGoogle Scholar
  73. 73.
    Williams LM, Oleksiak MF (2008) Signatures of selection in natural populations adapted to chronic pollution. BMC Evol Biol 8:282CrossRefGoogle Scholar
  74. 74.
    Nacci DE, Champlin D, Coiro L, McKinney R, Jayaraman S (2002) Predicting the occurrence of genetic adaptation to dioxinlike compounds in populations of the estuarine fish Fundulus heteroclitus. Environ Toxicol Chem 21:1525–1532Google Scholar
  75. 75.
    Luoma SN, Phillips DJS (1988) Distribution, variability, and impacts of trace elements in San Francisco Bay. Mar Pollut Bull 19:413–425CrossRefGoogle Scholar
  76. 76.
    Mount D, Heinis L, Highland T, Hockett JR, Hoff D, Jenson C, Norberg-King T (2009) Are PAHs the right metric for assessing toxicity related to oils, tars, creosote, and similar contaminants in sediments? Platform presentation. Annual meeting of the society of environmental toxicology and chemistry – North America, New Orleans, LA, USAGoogle Scholar
  77. 77.
    Brack W, Burgess RM (2011) Considerations for incorporating bioavailability in effect-directed analysis and Toxicity Identification Evaluation. In: Brack W (ed) Effect-directed analysis of complex environmental contamination. Springer, HeidelbergGoogle Scholar
  78. 78.
    Anderson BS, Phillips BM, Hunt JW, Clark SL, Voorhees JP, Tjeerdema RS, Castline J, Stewart M, Crane D, Mekebri A (2010) Evaluation of methods to determine causes of sediment toxicity in San Diego Bay, California, USA. Ecotoxicol Environ Saf 73:534–540CrossRefGoogle Scholar
  79. 79.
    Mehler WT, Maul JD, You J, Lydy MJ (2010) Identifying the causes of sediment-associated toxicity in the Illinois River complex using a sediment toxicity identification evaluation (TIE). Environ Toxicol Chem 29:158–167CrossRefGoogle Scholar
  80. 80.
    Perron MM, Burgess RM, Ho KT, Pelletier MC, Cantwell MG, Shine JP (2010) Bioavailability assessment of a contaminated field sediment from Patrick Bayou, Texas, USA: toxicity identification evaluation and equilibrium partitioning. Environ Toxicol Chem 29:742–750CrossRefGoogle Scholar
  81. 81.
    National Research Council (2001) Assessing the TMDL approach to water quality management. National Academy Press, Washington, DCGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Robert M. Burgess
    • 1
    Email author
  • Kay T. Ho
    • 1
  • Adam D. Biales
    • 2
  • Werner Brack
    • 3
  1. 1.National Health and Environmental Effects Research Laboratory, Atlantic Ecology DivisionUS Environmental Protection Agency, Office of Research and DevelopmentNarragansettUSA
  2. 2.National Exposure Research Laboratory, Ecological Exposure Research DivisionUS Environmental Protection Agency, Office of Research and DevelopmentCincinnatiUSA
  3. 3.Department of Effects-Directed AnalysisUFZ Helmholtz Centre for Environmental ResearchLeipzigGermany

Personalised recommendations