Structural Properties of Hard Metric TSP Inputs

(Extended Abstract)
  • Tobias Mömke
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6543)

Abstract

The metric traveling salesman problem is one of the most prominent APX-complete optimization problems. An important particularity of this problem is that there is a large gap between the known upper bound and lower bound on the approximability (assuming P ≠ NP). In fact, despite more than 30 years of research, no one could find a better approximation algorithm than the 1.5-approximation provided by Christofides. The situation is similar for a related problem, the metric Hamiltonian path problem, where the start and the end of the path are prespecified: the best approximation ratio up to date is 5/3 by an algorithm presented by Hoogeveen almost 20 years ago.

In this paper, we provide a tight analysis of the combined outcome of both algorithms. This analysis reveals that the sets of the hardest input instances of both problems are disjoint in the sense that any input is guaranteed to allow at least one of the two algorithms to achieve a significantly improved approximation ratio. In particular, we show that any input instance that leads to a 5/3-approximation with Hoogeveen’s algorithm enables us to find an optimal solution for the traveling salesman problem. This way, we determine a set S of possible pairs of approximation ratios. Furthermore, for any input we can identify one pair of approximation ratios within S that forms an upper bound on the achieved approximation ratios.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abu-Khzam, F.N., Collins, R.L., Fellows, M.R., Langston, M.A., Suters, W.H., Symons, C.T.: Kernelization algorithms for the vertex cover problem: Theory and experiments. In: Arge, L., Italiano, G.F., Sedgewick, R. (eds.) Proc. of the 6th Workshop on Algorithmic Engineering and Experiments (ALENEX 2004), pp. 62–69. Society for Industrial and Applied Mathematics (2004)Google Scholar
  2. 2.
    Archetti, C., Bertazzi, L., Speranza, M.G.: Reoptimizing the traveling salesman problem. Networks 42(3), 154–159 (2003)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ausiello, G., Escoffier, B., Monnot, J., Paschos, V.T.: Reoptimization of minimum and maximum traveling salesman’s tours. In: Arge, L., Freivalds, R. (eds.) SWAT 2006. LNCS, vol. 4059, pp. 196–207. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  4. 4.
    Böckenhauer, H.J., Forlizzi, L., Hromkovič, J., Kneis, J., Kupke, J., Proietti, G., Widmayer, P.: On the approximability of TSP on local modifications of optimally solved instances. Algorithmic Oper. Res. 2(2), 83–93 (2007)MathSciNetMATHGoogle Scholar
  5. 5.
    Böckenhauer, H.J., Hromkovič, J., Klasing, R., Seibert, S., Unger, W.: Towards the notion of stability of approximation for hard optimization tasks and the traveling salesman problem. Theor. Comput. Sci. 285(1), 3–24 (2002)MathSciNetMATHGoogle Scholar
  6. 6.
    Böckenhauer, H.J., Hromkovič, J., Mömke, T., Widmayer, P.: On the hardness of reoptimization. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds.) SOFSEM 2008. LNCS, vol. 4910, pp. 50–65. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  7. 7.
    Böckenhauer, H.J., Hromkovič, J., Seibert, S.: Stability of approximation. In: Gonzalez, T.F. (ed.) Handbook of Approximation Algorithms and Metaheuristics. Chapman & Hall/CRC Computer and Information Science Series, ch. 31. Chapman & Hall/CRC (2007)Google Scholar
  8. 8.
    Böckenhauer, H.J., Klasing, R., Mömke, T., Steinová, M.: Improved approximations for TSP with simple precedence constraints. In: Calamoneri, T., Diaz, J. (eds.) CIAC 2010. LNCS, vol. 6078, pp. 61–72. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Böckenhauer, H.J., Komm, D.: Reoptimization of the metric deadline TSP. Journal of Discrete Algorithms 8(1), 87–100 (2010)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Christofides, N.: Worst-case analysis of a new heuristic for the travelling salesman problem. Tech. Rep. 388, Graduate School of Industrial Administration, Carnegie-Mellon University (1976)Google Scholar
  11. 11.
    Downey, R.G., Fellows, M.R.: Parameterized Complexity. Monographs in Computer Science. Springer, New York (1999)CrossRefMATHGoogle Scholar
  12. 12.
    Eppstein, D.: Paired approximation problems and incompatible inapproximabilities. In: Charikar, M. (ed.) Proc. of the 21st Annual ACM-SIAM Symp. on Discrete Algorithms (SODA 2010), pp. 1076–1086. Society for Industrial and Applied Mathematics (2010)Google Scholar
  13. 13.
    Fellows, M.R.: Blow-ups, win/win’s, and crown rules: Some new directions in FPT. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 1–12. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Forlizzi, L., Hromkovič, J., Proietti, G., Seibert, S.: On the stability of approximation for Hamiltonian path problems. Algorithmic Oper. Res. 1(1), 31–45 (2006)MathSciNetMATHGoogle Scholar
  15. 15.
    Guttmann-Beck, N., Hassin, R., Khuller, S., Raghavachari, B.: Approximation algorithms with bounded performance guarantees for the clustered traveling salesman problem. Algorithmica 28(4), 422–437 (2000)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Hoogeveen, J.A.: Analysis of Christofides’ heuristic: some paths are more difficult than cycles. Oper. Res. Lett. 10(5), 291–295 (1991)MathSciNetMATHGoogle Scholar
  17. 17.
    Hromkovič, J.: Algorithmics for Hard Problems. Introduction to Combinatorial Optimization, Randomization, Approximation, and Heuristics. Texts in Theoretical Computer Science. An EATCS Series. Springer, Berlin (2003)Google Scholar
  18. 18.
    Niedermeier, R.: Invitation to Fixed Parameter Algorithms. Oxford Lecture Series in Mathematics and Its Applications. Oxford University Press, USA (2006)CrossRefMATHGoogle Scholar
  19. 19.
    Papadimitriou, C.H., Vempala, S.: On the approximability of the traveling salesman problem. Combinatorica 26(1), 101–120 (2006)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Prieto, E., Sloper, C.: Either/or: using vertex cover structure in designing FPT-algorithms—the case of k-Internal Spanning Tree. In: Dehne, F.K.H.A., Sack, J.R., Smid, M.H.M. (eds.) WADS 2003. LNCS, vol. 2748, pp. 474–483. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  21. 21.
    Sahni, S., Gonzalez, T.F.: P-complete approximation problems. J. ACM 23(3), 555–565 (1976)MathSciNetMATHGoogle Scholar
  22. 22.
    Vassilevska, V., Williams, R., Woo, S.L.M.: Confronting hardness using a hybrid approach. In: Proc. of the 17th Annual ACM-SIAM Symp. on Discrete Algorithms (SODA 2006), pp. 1–10. Society for Industrial and Applied Mathematics, New York (2006)Google Scholar
  23. 23.
    West, D.B.: Introduction to Graph Theory, 2nd edn. Prentice Hall Inc., Upper Saddle River (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tobias Mömke
    • 1
  1. 1.KTH — Royal Institute of TechnologyStockholmSweden

Personalised recommendations