Alternative Parameterizations for Cluster Editing

  • Christian Komusiewicz
  • Johannes Uhlmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6543)

Abstract

Given an undirected graph G and a nonnegative integer k, the NP-hard Cluster Editing problem asks whether G can be transformed into a disjoint union of cliques by applying at most k edge modifications. In the field of parameterized algorithmics, Cluster Editing has almost exclusively been studied parameterized by the solution size k. Contrastingly, in many real-world instances it can be observed that the parameter k is not really small. This observation motivates our investigation of parameterizations of Cluster Editing different from the solution size k. Our results are as follows. Cluster Editing is fixed-parameter tractable with respect to the parameter “size of a minimum cluster vertex deletion set of G”, a typically much smaller parameter than k. Cluster Editing remains NP-hard on graphs with maximum degree six. A restricted but practically relevant version of Cluster Editing is fixed-parameter tractable with respect to the combined parameter “number of clusters in the target graph” and “maximum number of modified edges incident to any vertex in G”. Many of our results also transfer to the NP-hard Cluster Deletion problem, where only edge deletions are allowed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bansal, N., Blum, A., Chawla, S.: Correlation clustering. Machine Learning 56(1–3), 89–113 (2004)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Böcker, S., Briesemeister, S., Bui, Q.B.A., Truß, A.: Going weighted: Parameterized algorithms for cluster editing. Theor. Comput. Sci. 410(52), 5467–5480 (2009)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Böcker, S., Briesemeister, S., Klau, G.W.: Exact algorithms for cluster editing: Evaluation and experiments. Algorithmica (2009) (to appear)Google Scholar
  4. 4.
    Chen, J., Meng, J.: A 2k kernel for the cluster editing problem. In: Thai, M.T., Sahni, S. (eds.) COCOON 2010. LNCS, vol. 6196, pp. 459–468. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  5. 5.
    Damaschke, P.: Fixed-parameter enumerability of cluster editing and related problems. Theory Comput. Syst. 46(2), 261–283 (2010)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Dehne, F.K.H.A., Langston, M.A., Luo, X., Pitre, S., Shaw, P., Zhang, Y.: The cluster editing problem: Implementations and experiments. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 13–24. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Demaine, E.D., Hajiaghayi, M., Marx, D.: Open problems – parameterized complexity and approximation algorithms. In: Parameterized Complexity and Approximation Algorithms. Dagstuhl Seminar Proceedings, vol. 09511. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany (2010)Google Scholar
  8. 8.
    Fellows, M.R., Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: Graph-based data clustering with overlaps. In: Ngo, H.Q. (ed.) COCOON 2009. LNCS, vol. 5609, pp. 516–526. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Fellows, M.R., Langston, M.A., Rosamond, F.A., Shaw, P.: Efficient parameterized preprocessing for Cluster Editing. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 312–321. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: Exact algorithms for clique generation. Theory Comput. Syst. 38(4), 373–392 (2005)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Guo, J.: A more effective linear kernelization for cluster editing. Theor. Comput. Sci. 410(8-10), 718–726 (2009)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Guo, J., Komusiewicz, C., Niedermeier, R., Uhlmann, J.: A more relaxed model for graph-based data clustering: s-plex cluster editing. SIAM Journal on Discrete Mathematics (2010) (to appear)Google Scholar
  13. 13.
    Hüffner, F., Komusiewicz, C., Moser, H., Niedermeier, R.: Fixed-parameter algorithms for cluster vertex deletion. Theory Comput. Syst. 47(1), 196–217 (2010)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Křivánek, M., Morávek, J.: NP-hard problems in hierarchical-tree clustering. Acta Inform. 23(3), 311–323 (1986)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Niedermeier, R.: Reflections on multivariate algorithmics and problem parameterization. In: Proc. 27th STACS, vol. 5, pp. 17–32. Schloss Dagstuhl–Leibniz-Zentrum für Informatik, LIPIcs (2010)Google Scholar
  16. 16.
    Protti, F., da Silva, M.D., Szwarcfiter, J.L.: Applying modular decomposition to parameterized cluster editing problems. Theory Comput. Syst. 44(1), 91–104 (2009)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Shamir, R., Sharan, R., Tsur, D.: Cluster graph modification problems. Discrete Appl. Math. 144(1–2), 173–182 (2004)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Christian Komusiewicz
    • 1
  • Johannes Uhlmann
    • 1
  1. 1.Institut für InformatikFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations