On d-Regular Schematization of Embedded Paths

  • Andreas Gemsa
  • Martin Nöllenburg
  • Thomas Pajor
  • Ignaz Rutter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6543)

Abstract

In the d-regular path schematization problem we are given an embedded path P (e.g., a route in a road network) and an integer d. The goal is to find a d-schematized embedding of P in which the orthogonal order of all vertices in the input is preserved and in which every edge has a slope that is an integer multiple of 90°/d. We show that deciding whether a path can be d-schematized is NP-hard for any integer d. We further model the problem as a mixed-integer linear program. An experimental evaluation indicates that this approach generates reasonable route sketches for real-world data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawala, M., Stolte, C.: Rendering effective route maps: Improving usability through generalization. In: Proc. 28th Ann. Conf. Computer Graphics and Interactive Techniques (SIGGRAPH 2001), pp. 241–249. ACM, New York (2001)CrossRefGoogle Scholar
  2. 2.
    de Berg, M., Khosravi, A.: Finding perfect auto-partitions is NP-hard. In: Proc. 25th European Workshop Comput. Geom (EuroCG 2008), pp. 255–258 (2008)Google Scholar
  3. 3.
    Brandes, U., Eiglsperger, M., Kaufmann, M., Wagner, D.: Sketch-driven orthogonal graph drawing. In: Goodrich, M.T., Kobourov, S.G. (eds.) GD 2002. LNCS, vol. 2528, pp. 1–11. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  4. 4.
    Brandes, U., Pampel, B.: On the hardness of orthogonal-order preserving graph drawing. In: Tollis, I.G., Patrignani, M. (eds.) GD 2008. LNCS, vol. 5417, pp. 266–277. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  5. 5.
    Branke, J.: Dynamic graph drawing. In: Kaufmann, M., Wagner, D. (eds.) Drawing Graphs. LNCS, vol. 2025, pp. 228–246. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. 6.
    Cabello, S., de Berg, M., van Dijk, S., van Kreveld, M., Strijk, T.: Schematization of road networks. In: Proc. 17th Annual Symposium on Computational Geometry (SoCG 2001), June 3–5, pp. 33–39. ACM Press, New York (2001)Google Scholar
  7. 7.
    Delling, D., Gemsa, A., Nöllenburg, M., Pajor, T.: Path schematization for route sketches. In: Kaplan, H. (ed.) SWAT 2010. LNCS, vol. 6139, pp. 285–296. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Douglas, D.H., Peucker, T.K.: Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica 10(2), 112–122 (1973)CrossRefGoogle Scholar
  9. 9.
    Dwyer, T., Koren, Y., Marriott, K.: Stress majorization with orthogonal ordering constraints. In: Healy, P., Nikolov, N.S. (eds.) GD 2005. LNCS, vol. 3843, pp. 141–152. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  10. 10.
    Gemsa, A., Nöllenburg, M., Pajor, T., Rutter, I.: On d-regular Schematization of Embedded Paths. Tech. Rep. 2010-21, Faculty of Informatics, Karlsruhe Institute of Technology (2010), http://digbib.ubka.uni-karlsruhe.de/volltexte/1000020426
  11. 11.
    Hayashi, K., Inoue, M., Masuzawa, T., Fujiwara, H.: A layout adjustment problem for disjoint rectangles preserving orthogonal order. In: Whitesides, S.H. (ed.) GD 1998. LNCS, vol. 1547, pp. 183–197. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  12. 12.
    Merrick, D., Gudmundsson, J.: Path simplification for metro map layout. In: Kaufmann, M., Wagner, D. (eds.) GD 2006. LNCS, vol. 4372, pp. 258–269. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental map. J. Visual Languages and Computing 6(2), 183–210 (1995)CrossRefGoogle Scholar
  14. 14.
    Neyer, G.: Line simplification with restricted orientations. In: Dehne, F., Gupta, A., Sack, J.-R., Tamassia, R. (eds.) WADS 1999. LNCS, vol. 1663, pp. 13–24. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  15. 15.
    Nöllenburg, M.: Automated drawing of metro maps. Tech. Rep. 2005-25, Fakultät für Informatik, Universität Karlsruhe (2005), http://digbib.ubka.uni-karlsruhe.de/volltexte/1000004123
  16. 16.
    Nöllenburg, M., Wolff, A.: Drawing and Labeling High-Quality Metro Maps by Mixed-Integer Programming. IEEE Transactions on Visualization and Computer Graphics (2010), http://dx.doi.org/10.1109/TVCG.2010.81 (preprint available online)
  17. 17.
    Wolff, A.: Drawing subway maps: A survey. Informatik - Forschung und Entwicklung 22(1), 23–44 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Andreas Gemsa
    • 1
  • Martin Nöllenburg
    • 1
    • 2
  • Thomas Pajor
    • 1
  • Ignaz Rutter
    • 1
  1. 1.Institute of Theoretical InformaticsKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  2. 2.Department of Computer ScienceUniversity of CaliforniaIrvineUSA

Personalised recommendations