Min-Max Coverage in Multi-interface Networks

  • Gianlorenzo D’Angelo
  • Gabriele Di Stefano
  • Alfredo Navarra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6543)

Abstract

We consider devices equipped with multiple wired or wireless interfaces. By switching among interfaces or by combining the available interfaces, each device might establish several connections. A connection is established when the devices at its endpoints share at least one active interface. Each interface is assumed to require an activation cost. In this paper, we consider the problem of establishing the connections defined by a network G = (V,E) while keeping as low as possible the maximum cost set of active interfaces at the single nodes. Nodes V represent the devices, edges E represent the connections that must be established. We study the problem of minimizing the maximum cost set of active interfaces among the nodes of the network in order to cover all the edges. We prove that the problem is NP-hard for any fixed Δ ≥ 5 and k ≥ 16, with Δ being the maximum degree, and k being the number of different interfaces among the network. We also show that the problem cannot be approximated within Ω(ln Δ). We then provide a general approximation algorithm which guarantees a factor of O((1 + b)ln (Δ)), with b being a parameter depending on the topology of the input graph. Interestingly, b can be bounded by a constant for many graph classes. Other approximation and exact algorithms for special cases are presented.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Athanassopoulos, S., Caragiannis, I., Kaklamanis, C., Papaioannou, E.: Energy-efficient communication in multi-interface wireless networks. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 102–111. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Bahl, P., Adya, A., Padhye, J., Walman, A.: Reconsidering wireless systems with multiple radios. SIGCOMM Comput. Commun. Rev. 34(5), 39–46 (2004)CrossRefGoogle Scholar
  3. 3.
    Barsi, F., Navarra, A., Pinotti, C.M.: Cheapest paths in multi-interface networks. In: Garg, V., Wattenhofer, R., Kothapalli, K. (eds.) ICDCN 2009. LNCS, vol. 5408, pp. 37–42. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  4. 4.
    Bruera, F., Cicerone, S., D’Angelo, G., Di Stefano, G., Frigioni, D.: Dynamic multi-level overlay graphs for shortest paths. Mathematics in Computer Science 1(4), 709–736 (2008)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Caporuscio, M., Charlet, D., Issarny, V., Navarra, A.: Energetic Performance of Service-oriented Multi-radio Networks: Issues and Perspectives.. In: 6th Int. Workshop on Software and Performance (WOSP), pp. 42–45. ACM Press, New York (2007)Google Scholar
  6. 6.
    Cavalcanti, D., Gossain, H., Agrawal, D.: Connectivity in multi-radio, multi-channel heterogeneous ad hoc networks. In: IEEE 16th Int. Symp. on Personal, Indoor and Mobile Radio Communications (PIMRC), pp. 1322–1326. IEEE, Los Alamitos (2005)Google Scholar
  7. 7.
    Chrobak, M., Eppstein, D.: Planar orientations with low out-degree and compaction of adjacency matrices. Theoretical Computer Science 86(2), 243–266 (1991)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    D’Angelo, G., Di Stefano, G., Navarra, A.: Minimizing the Maximum Duty for Connectivity in Multi-Interface Networks. In: Zhong, F. (ed.) COCOA 2010, Part II. LNCS, vol. 6509, pp. 254–267. Springer, Heidelberg (2010)Google Scholar
  9. 9.
    Draves, R., Padhye, J., Zill, B.: Routing in multi-radio, multi-hop wireless mesh networks. In: 10th Annual International Conference on Mobile Computing and Networking (MobiCom), pp. 114–128. ACM, New York (2004)Google Scholar
  10. 10.
    Faragó, A., Basagni, S.: The effect of multi-radio nodes on network connectivity—a graph theoretic analysis. In: IEEE Int. Workshop on Wireless Distributed Networks (WDM). IEEE, Los Alamitos (2008)Google Scholar
  11. 11.
    Frigioni, D., Marchetti-Spaccamela, A., Nanni, U.: Semidynamic algorithms for maintaining single-source shortest path trees. Algorithmica 22(3), 250–274 (1998)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Garey, M.R., Johnson, D.S.: Computers and Intractability, A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)MATHGoogle Scholar
  13. 13.
    Johnson, D.S.: Approximation algorithms for combinatorial problems. Journal of Computer and Sysntem Sciences 9, 256–278 (1974)CrossRefMATHGoogle Scholar
  14. 14.
    Klasing, R., Kosowski, A., Navarra, A.: Cost Minimization in Wireless Networks with a Bounded and Unbounded Number of Interfaces. Networks 53(3), 266–275 (2009)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kosowski, A., Navarra, A., Pinotti, M.C.: Exploiting Multi-Interface Networks: Connectivity and Cheapest Paths. Wireless Networks 16(4), 1063–1073 (2010)CrossRefGoogle Scholar
  16. 16.
    Malitz, S.M.: Genus g graphs have pagenumber \(O(\sqrt{g})\). Journal of Algorithms 17(1), 85–109 (1994)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Gianlorenzo D’Angelo
    • 1
  • Gabriele Di Stefano
    • 1
  • Alfredo Navarra
    • 2
  1. 1.Dipartimento di Ingegneria Elettrica e dell’InformazioneUniversità degli Studi dell’AquilaItaly
  2. 2.Dipartimento di Matematica e InformaticaUniversità degli Studi di PerugiaItaly

Personalised recommendations