Advertisement

Randomized OBDDs for the Most Significant Bit of Multiplication Need Exponential Size

  • Beate Bollig
  • Marc Gillé
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6543)

Abstract

Integer multiplication as one of the basic arithmetic functions has been in the focus of several complexity theoretical investigations and ordered binary decision diagrams (OBDDs) are one of the most common dynamic data structures for Boolean functions. Only two years ago, the question whether the deterministic OBDD complexity of the most significant bit of integer multiplication is exponential has been answered affirmatively. Since probabilistic methods have turned out to be useful in almost all areas of computer science, one may ask whether randomization can help to represent the most significant bit of integer multiplication in smaller size. Here, it is proved that the randomized OBDD complexity is also exponential.

Keywords

computational complexity integer multiplication lower bounds ordered binary decision diagrams randomized one-round communication complexity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ablayev, F.: Randomization and nondeterminism are incomparable for ordered read-once branching programs. In: Degano, P., Gorrieri, R., Marchetti-Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 195–202. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  2. 2.
    Ablayev, F., Karpinski, M.: On the power of randomized ordered branching programs. In: Meyer auf der Heide, F., Monien, B. (eds.) ICALP 1996. LNCS, vol. 1099, pp. 348–356. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  3. 3.
    Ablayev, F., Karpinski, M.: A lower bound for integer multiplication on randomized ordered read-once branching programs. Information and Computation 186(1), 78–89 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bollig, B.: On the OBDD complexity of the most significant bit of integer multiplication. In: Agrawal, M., Du, D.-Z., Duan, Z., Li, A. (eds.) TAMC 2008. LNCS, vol. 4978, pp. 306–317. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Bollig, B.: Integer multiplication and the complexity of binary decision diagrams. EATCS Bulletin 98, 78–106 (2009)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Bollig, B.: Larger lower bounds on the OBDD complexity of integer multiplication. In: Dediu, A.H., Ionescu, A.M., Martín-Vide, C. (eds.) LATA 2009. LNCS, vol. 5457, pp. 212–223. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Bollig, B.: A larger lower bound on the OBDD complexity of the most significant bit of multiplication. In: López-Ortiz, A. (ed.) LATIN 2010. LNCS, vol. 6034, pp. 255–266. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  8. 8.
    Bollig, B., Waack, S., Woelfel, P.: Parity graph-driven read-once branching programs and an exponential lower bound for integer multiplication. Theoretical Computer Science 362, 86–99 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bollig, B., Woelfel, P.: A read-once branching program lower bound of Ω(2n/4) for integer multiplication using universal hashing. In: Proc. of 33rd STOC, pp. 419–424 (2001)Google Scholar
  10. 10.
    Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. on Computers 35, 677–691 (1986)CrossRefzbMATHGoogle Scholar
  11. 11.
    Bryant, R.E.: On the complexity of VLSI implementations and graph representations of Boolean functions with application to integer multiplication. IEEE Trans. on Computers 40, 205–213 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    De, A., Kurur, P., Saha, C., Sapthariski, R.: Fast integer multiplication using modular arithmetic. In: Proc.of 40th STOC, pp. 499–506 (2008)Google Scholar
  13. 13.
    Fürer, M.: Faster integer multiplication. In: Proc. of 39th STOC, pp. 57–66 (2007)Google Scholar
  14. 14.
    Hajnal, A., Maass, W., Pudlák, P., Szegedy, M., Turán, G.: Threshold circuits of bounded depth. In: Proc. 28th FOCS 1987, pp. 99–110 (1987)Google Scholar
  15. 15.
    Hromkovič, J.: Communication Complexity and Parallel Computing. Springer, Heidelberg (1997)CrossRefzbMATHGoogle Scholar
  16. 16.
    Kremer, I., Nisan, N., Ron, D.: On Randomized One-Round Communication Complexity. Computational Complexity 8(1), 21–49 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University Press, Cambridge (1997)CrossRefzbMATHGoogle Scholar
  18. 18.
    Miltersen, P.B., Nisan, N., Safra, S., Wigderson, A.: On data structures and asymmetric communication complexity. Journal of Computer and System Science 57(1), 37–49 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ponzio, S.: A lower bound for integer multiplication with read-once branching programs. SIAM Journal on Computing 28, 798–815 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Sauerhoff, M.: Lower bounds for randomized read-k-times branching programs. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 103–115. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  21. 21.
    Sauerhoff, M., Woelfel, P.: Time-space trade-off lower bounds for integer multiplication and graphs of arithmetic functions. In: Proc. of 35th STOC, pp. 186–195 (2003)Google Scholar
  22. 22.
    Schönhage, A., Strassen, V.: Schnelle Multiplikation großer Zahlen. Computing 7, 281–292 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Sen, P., Venkatesh, S.: Lower bounds for predecessor searching in the cell probe model. Journal of Computer and System Sciences 74(3), 364–385 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Smirnov, D.: Shannon’s information methods for lower bounds for probabilistic communication complexity. Master’s thesis, Moskow University (1988)Google Scholar
  25. 25.
    Wegener, I.: Branching Programs and Binary Decision Diagrams - Theory and Applications. SIAM Monographs on Discrete Mathematics and Applications (2000)Google Scholar
  26. 26.
    Woelfel, P.: New bounds on the OBDD-size of integer multiplication via universal hashing. Journal of Computer and System Science 71(4), 520–534 (2005)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Beate Bollig
    • 1
  • Marc Gillé
    • 1
  1. 1.LS2 InformatikTU DortmundDortmundGermany

Personalised recommendations