Advertisement

Electromagnetic and Network Theory of Waveguide Radiation by Spherical Modes Expansions

  • Cristiano TomassoniEmail author
  • Mauro Mongiardo
  • Peter Russer
  • Roberto Sorrentino
Chapter

Abstract

In recent years, modal techniques have been successfully improved and are increasingly used for dealing with design of waveguide discontinuities and passive components [1, 2, 3, 4, 5, 6, 7, 8], due to their efficiency and also because they provide rigorous and useful network representations. One distinguished characteristic of modal techniques is to separate the transverse field behavior from the longitudinal one; this decoupling makes it feasible to consider electromagnetic wave propagation inside a waveguide as a superposition of transmission lines (each pertaining to a mode) which couple only at discontinuities. Electromagnetic field representation inside a waveguide with finite cross-section, is therefore achieved by a discrete summation of the relevant waveguide modes.

Keywords

Modal Technique Coupling Matrix Rectangular Waveguide Radiation Problem Electromagnetic Wave Propagation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    R. Sorrentino, M. Mongiardo, F. Alessandri, G. Schiavon, An investigation on the numerical properties of the mode-matching technique. Int. J. Numer. Model. 4, 19–43 (1991)CrossRefGoogle Scholar
  2. 2.
    T. Rozzi, M. Mongiardo, E-plane steps in rectangular waveguide. IEEE Trans. Microw. Theory Tech. 39, 1279–1288 (1991)CrossRefGoogle Scholar
  3. 3.
    F. Alessandri, G. Baini, M. Mongiardo, R. Sorrentino, A 3-D mode matching technique for the efficient analysis of coplanar MMIC discontinuities with finite metallization thickness. IEEE Trans. Microw. Theory Tech. 41, 1625–1629 (1993)CrossRefGoogle Scholar
  4. 4.
    M. Mongiardo, R. Sorrentino, Efficient and versatile analysis of microwave structures by combined mode matching and finite difference methods. IEEE Microw. Guid. Wave Lett., 3, 241–243, (1993)CrossRefGoogle Scholar
  5. 5.
    F. Alessandri, M. Mongiardo, R. Sorrentino, Rigorous mode matching analysis of mitered E-plane bends in rectangular waveguide. IEEE Microw. Guid. Wave Lett. 4, 408–410 (1994)CrossRefGoogle Scholar
  6. 6.
    M. Mongiardo, C. Tomassoni, Modal analysis of discontinuities between elliptical waveguides. IEEE Trans. Microw. Theory Tech. 48, 597–605 (2000)CrossRefGoogle Scholar
  7. 7.
    L. Accatino, M. Mongiardo, Hybrid circuit-fullwave computer-aided design of a manifold multiplexers without tuning elements. IEEE Trans. Microw. Theory Tech. 50, 2044–2048 (2002)CrossRefGoogle Scholar
  8. 8.
    G. Bertin, B. Piovano, L. Accatino, M. Mongiardo, Full-wave design and optimization of circular waveguide polarizers with elliptical irises. IEEE Trans. Microw. Theory Tech. 50, 1077–1083 (2002)CrossRefGoogle Scholar
  9. 9.
    P. Russer, Electromagnetics, Microwave Circuit and Antenna Design for Communications Engineering, 2nd edn. (Artech House, Boston, London, 2006)Google Scholar
  10. 10.
    P. Russer, Network-oriented modeling of radiating electromagnetic structures. Elektrik Turk. J. Elec. Engin. 10(2), 147–162 (2002)Google Scholar
  11. 11.
    M. Mongiardo, P. Russer, Field computations and network representations for open electromagnetic structures. Elektrotechnik und Informationstechnik, no. 1. (Springer, Wien New York, 2004), pp. 2–5Google Scholar
  12. 12.
    M. Mongiardo, C. Tomassoni, P. Russer, Generalized network formulation: Application to flange–mounted radiating waveguides. IEEE Trans. Antennas Propag. 55, 1–12 (2007)CrossRefGoogle Scholar
  13. 13.
    M. Mongiardo, P. Russer, R. Sorrentino, C. Tomassoni, Spherical modal expansion for arrays of flange–mounted rectangular waveguides. 37th European Microwave Conference, Sept. 2007Google Scholar
  14. 14.
    M. Mongiardo, P. Russer, R. Sorrentino, C. Tomassoni, Spherical mode expansions for flange–mounted waveguide apertures. ICEAA, Sept. 2007Google Scholar
  15. 15.
    M. Mongiardo, P. Russer, C. Tomassoni, L.B. Felsen, Analysis of n-furcation in elliptical waveguides via the generalized network formulation. IEEE Trans. Microw. Theory Tech. 47 (1999)Google Scholar
  16. 16.
    L. Felsen, M. Mongiardo, P. Russer, Electromagnetic field representations and computations in complex structures I: Complexity architecture and generalized network formulation. Int. J. Numer. Model. 15, 93–107 (2002)zbMATHCrossRefGoogle Scholar
  17. 17.
    L. Felsen, M. Mongiardo, P. Russer, Electromagnetic field representations and computations in complex structures II: Alternative Green’s functions. Int. J. Numer. Model. 15, 109–125 (2002)zbMATHCrossRefGoogle Scholar
  18. 18.
    P. Russer, M. Mongiardo, L. Felsen, Electromagnetic field representations and computations in complex structures III: Network representations of the connection and subdomain circuits. Int. J. Numer. Model. 15, 127–145 (2002)zbMATHCrossRefGoogle Scholar
  19. 19.
    J. Rubio, M.A. Gonzlez, J. Zapata, Analysis of cavity-backed microstrip antennas by a 3-D finite element/segmentation method and a matrix Lanczos-Pad algorithm (SFELP). IEEE Antennas Wireless Propag. Lett. 1, 193–195 (2002)CrossRefGoogle Scholar
  20. 20.
    J. Rubio, M.A. Gonzlez, J. Zapata, Efficient full-wave analysis of mutual coupling between cavity-backed microstrip patch antennas. IEEE Antennas Wireless Propag. Lett. 2, 155–158 (2003)CrossRefGoogle Scholar
  21. 21.
    J. Rubio, M.A. Gonzlez, J. Zapata, Generalized-scattering-matrix analysis of a class of finite arrays of coupled antennas by using 3-D FEM and spherical mode expansion. IEEE Trans. Antennas Propag. 53, 1133–1144 (2005)CrossRefGoogle Scholar
  22. 22.
    R.J. Mailloux, Radiation and near field coupling between two collinear open ended waveguides. IEEE Trans. Antennas Propag. AP-17, 49–55 (1969)Google Scholar
  23. 23.
    R.J. Mailloux, First-order solutions for mutual coupling between waveguides which propagate two orthogonal modes. IEEE Trans. Antennas Propag. AP-17, 740–746 (1969)Google Scholar
  24. 24.
    T.S. Bird, Mode coupling in a planar circular waveguide array. IEE J. Microw. Opt. Acoust. 3, 172–180 (1979)CrossRefGoogle Scholar
  25. 25.
    T.S. Bird, Analysis of mutual coupling in finite arrays of different sized waveguides. IEEE Trans. Antennas Propag. AP-38, 166–172 (1990)Google Scholar
  26. 26.
    T.S. Bird, Behavior of multiple elliptical waveguides opening into a ground plane. IEE Proc. 137, 121–126 (1990)Google Scholar
  27. 27.
    M. Mongiardo, T. Rozzi, Singular integral equation analysis of flange-mounted rectangular waveguide radiators. IEEE Trans. Antennas Propag. 556–565 (1993)Google Scholar
  28. 28.
    M. Mongiardo, R. Ravanelli, Automated design of corrugated feeds by the adjoint network method. Special Issue on automated circuit design using electromagnetic simulators, IEEE Trans. Microw. Theory Tech. 45, 787–793 (1997)Google Scholar
  29. 29.
    M. Mongiardo, C. Tomassoni, Mutual coupling evaluation for arrays of flange-mounted elliptical waveguides. IEEE Trans. Antennas Propag. 49, 763–770 (2001)CrossRefGoogle Scholar
  30. 30.
    L. Tarricone, C. Tomassoni, M. Mongiardo, A parallel framework for the analysis of metal flanged rectangular aperture arrays. IEEE Trans. Antennas Propag. 49, 1479–1484 (2001)CrossRefGoogle Scholar
  31. 31.
    M. Bailey, Mutual coupling between circular waveguide-fed apertures in a rectangular ground plane. IEEE Trans. Antennas Propag. 22(4), 597–599 (1974)CrossRefGoogle Scholar
  32. 32.
    C.J. Reddy, M.D. Deshpande, C.R. Cockrell, F.B. Beck, Radiation characteristics of cavity backed aperture antennas infinite ground plane using the hybrid FEM/MoM technique and geometrical theory of diffraction. IEEE Trans. Antennas Propag. 44(10), 1327–1333 (1996)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Cristiano Tomassoni
    • 1
    Email author
  • Mauro Mongiardo
    • 1
  • Peter Russer
    • 2
  • Roberto Sorrentino
    • 1
  1. 1.Università di PerugiaPerugiaItaly
  2. 2.Technische Universität MünchenMunichGermany

Personalised recommendations