Advertisement

Online Ranking for Tournament Graphs

  • Claire Mathieu
  • Adrian Vladu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6534)

Abstract

We study the problem of producing a global ranking of items given pairwise ranking information, when the items to be ranked arrive in an online fashion. We study both the maximization and the minimization versions of the problem on tournaments (max acyclic subgraph, feedback arc set). We also study the case when the items arrive in random order.

Keywords

Greedy Algorithm Competitive Ratio Online Algorithm Back Edge Optimal Ranking 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alon, N.: Ranking tournaments. SIAM J. Discrete Math. 20(1), 137–142 (2006)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Ailon, N., Charikar, M., Newman, A.: Aggregating inconsistent information: ranking and clustering. Journal of the ACM (JACM) 55, 1–27 (2008)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Ailon, N., Mohri, M.: An efficient reduction of ranking to classification. In: Procs. 21st COLT, pp. 87–97 (2008)Google Scholar
  4. 4.
    Arora, S., Frieze, A., Kaplan, H.: A new rounding procedure for the assignment problem with applications to dense graph arrangement problems. Mathematical Programming 92, 1–36 (2002)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Babaioff, M., Immorlica, N., Kleinberg, R.: Matroids, secretary problems, and online mechanisms. In: Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 434–443 (2007)Google Scholar
  6. 6.
    Berger, B., Shor, P.: Tight bounds for the maximum acyclic subgraph problem. Journal of Algorithms 25, 118 (1997)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Borodin, A., El-Yaniv, R.: On-Line Computation and Competitive Analysis. Cambridge University Press, Cambridge (1998)MATHGoogle Scholar
  8. 8.
    Charbit, P., Thomasse, S., Yeo, A.: The minimum feedback arc set problem is NP-hard for tournaments. Combinatorics, Probability and Computing 16, 1–4 (2007)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Charikar, M., Makarychev, K., Makarychev, Y.: On the advantage over random for maximum acyclic subgraph. In: 48th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2007, pp. 625–633 (2007)Google Scholar
  10. 10.
    Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to order things. J. Artificial Intelligence Research 10, 243–270 (2007)MathSciNetMATHGoogle Scholar
  11. 11.
    Conitzer, V.: Computer Slater rankings using similarities among candidates. In: Procs. 21st AAAI, pp. 613–619 (2006)Google Scholar
  12. 12.
    Coppersmith, D., Fleischer, L., Rudra, A.: Ordering by weighted number of wins gives a good ranking for weighted tournaments. In: Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithm, p. 782. ACM, New York (2006)Google Scholar
  13. 13.
    Devanur, N., Hayes, T.: The Adwords Problem: Online Keyword Matching with Budgeted Bidders under Random Permutations. In: Proc. ACM EC (2009); [19] Moreover, there is a polynomial-time approximation scheme (PTAS) for the feedback arc set on tournamentsGoogle Scholar
  14. 14.
    Diaconis, P., Graham, R.: Spearman’s footrule as a measure of disarray. Journal of the Royal Statistical Society, Series B 39(2), 262–268 (1977)MathSciNetMATHGoogle Scholar
  15. 15.
    Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank aggegation methods for the web. In: Procs. 10th WWW, pp. 613–622 (2001), The NP-hardness proof is in the online-only appendix available from http://www10.org/cdrom/papers/577/
  16. 16.
    Frieze, A.M., Kannan, R.: Quick approximation to matrices and applications. Combinatorica 19(2), 175–220 (1999)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Kenyon, C.: Best-fit bin-packing with random order. In: Proceedings of the Seventh Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 359–364 (1996)Google Scholar
  18. 18.
    Mathieu, C., Schudy, W.: Yet another algorithm for dense max cut: Go greedy. In: Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 176–182. Society for Industrial and Applied Mathematics, Philadelphia (2008)Google Scholar
  19. 19.
    Mathieu, C., Schudy, W.: How to rank with few errors: a PTAS for weighted feedback arc set on tournaments. In: Procs. 39 th ACM STOC, pp. 95–103 (2007), See rather the journal submission available from http://cs.brown.edu/people/ws/papers/fast_journal.pdf
  20. 20.
    Seshu, S., Reed, M.B.: Linear Graphs and Electrical Networks. Addison-Wesley, Reading (1961)MATHGoogle Scholar
  21. 21.
    Slater, P.: Inconsistencies in a schedule of paired comparisons. Biometrika 48, 303–312 (1961)CrossRefGoogle Scholar
  22. 22.
    Yao, A.: Probabilistic computations: Toward a unified measure of complexity. In: Proceedings of the 18th IEEE Symposium on Foundations of Computer Science (FOCS), pp. 222–227 (1977)Google Scholar
  23. 23.
    Younger, D.H.: Minimum feedback arc sets for a directed graph. IEEE Trans. Circuit Theory 10, 238–245 (1963)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Claire Mathieu
    • 1
  • Adrian Vladu
    • 1
  1. 1.Department of Computer ScienceBrown UniversityProvidenceUSA

Personalised recommendations