How to Play Unique Games on Expanders

  • Konstantin Makarychev
  • Yury Makarychev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6534)

Abstract

In this paper, we improve a result by Arora, Khot, Kolla, Steurer, Tulsiani, and Vishnoi on solving the Unique Games problem on expanders. Given a (1 − ε)-satisfiable instance of Unique Games with the constraint graph G, our algorithm finds an assignment satisfying at least a 1 − Cε/hG fraction of all constraints if ε < cλG where hG is the edge expansion of G, λG is the second smallest eigenvalue of the Laplacian of G, and C and c are some absolute constants.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arora, S., Khot, S., Kolla, A., Steurer, D., Tulsiani, M., Vishnoi, N.: Unique games on expanding constraint graphs are easy. In: Proceedings of the 40th ACM Symposium on Theory of Computing, pp. 21–28 (2008)Google Scholar
  2. 2.
    Austrin, P., Mossel, E.: Approximation resistant predicates from pairwise independence. In: Proceedings of the 2008 IEEE 23rd Annual Conference on Computational Complexity, pp. 249–258. IEEE Computer Society, Los Alamitos (2008)CrossRefGoogle Scholar
  3. 3.
    Charikar, M., Makarychev, K., Makarychev, Y.: Near-Optimal Algorithms for Unique Games. In: Proceedings of the 38th ACM Symposium on Theory of Computing, pp. 205–214 (2006)Google Scholar
  4. 4.
    Chlamtac, E., Makarychev, K., Makarychev, Y.: How to Play Unique Games Using Embeddings. In: Proceedings of the 47th IEEE Symposium on Foundations of Computer Science, pp. 687–696 (2006)Google Scholar
  5. 5.
    Gupta, A., Talwar, K.: Approximating Unique Games. In: Proceedings of the 17th ACM-SIAM Symposium on Discrete Algorithms, pp. 99–106 (2006)Google Scholar
  6. 6.
    Guruswami, V., Manokaran, R., Raghavendra, P.: Beating the Random Ordering is Hard: Inapproximability of Maximum Acyclic Subgraph. In: Proceedings of the 49th IEEE Symposium on Foundations of Computer Science, pp. 573–582 (2008)Google Scholar
  7. 7.
    Guruswami, V., Raghavendra, P.: Constraint satisfaction over a non-boolean domain: Approximation algorithms and unique-games hardness. In: Goel, A., Jansen, K., Rolim, J.D.P., Rubinfeld, R. (eds.) APPROX and RANDOM 2008. LNCS, vol. 5171, pp. 77–90. Springer, Heidelberg (2008)Google Scholar
  8. 8.
    Khot, S.: On the power of unique 2-prover 1-round games. In: Proceedings of the 34th ACM Symposium on Theory of Computing, pp. 767–775 (2002)Google Scholar
  9. 9.
    Khot, S., Kindler, G., Mossel, E., O’Donnell, R.: Optimal inapproximability results for MAX-CUT and other two-variable CSPs? SIAM Journal of Computing 37(1), 319–357 (2007)CrossRefMATHGoogle Scholar
  10. 10.
    Khot, S., Regev, O.: Vertex cover might be hard to approximate to within 2 − ε. In: Proceedings of the 18th IEEE Annual Conference on Computational Complexity (2003)Google Scholar
  11. 11.
    Samorodnitsky, A., Trevisan, L.: Gowers uniformity, influence of variables, and PCPs. In: Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pp. 11–20 (2006)Google Scholar
  12. 12.
    Trevisan, L.: Approximation Algorithms for Unique Games. In: Proceedings of the 46th IEEE Symposium on Foundations of Computer Science, pp. 197–205 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Konstantin Makarychev
    • 1
  • Yury Makarychev
    • 2
  1. 1.IBM T.J. Watson Research CenterUSA
  2. 2.Toyota Technological InstituteChicagoUSA

Personalised recommendations