Approximation Algorithms for Domination Search

  • Fedor V. Fomin
  • Petr A. Golovach
  • Dimitrios M. Thilikos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6534)


The r-domination search game on graphs is a game-theoretical approach to the investigation of several graph and hypergraph parameters including treewidth and hypertree width. The task is to identify the minimum number of cops sufficient to catch the visible and fast robber. In r-domination search, the robber is being arrested if he resides inside a ball of radius r around some cop. In this setting, the power of the cops does not depend only on how many they are but also on the local topology of the graph around them. This is the main reason why the approximation complexity of the r-domination search game varies considerably, depending on whether r = 0 or r ≥ 1. We prove that this discrepancy is canceled when the game is played in (non-trivial) graph classes that are closed under taking of minors. We give a constant factor approximation algorithm that for every fixed r and graph H, computes the minimum number of cops required to capture the robber in the r-domination game on graphs excluding H as a minor.


Domination search graph minors approximation algorithms 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Adler, I., Gottlob, G., Grohe, M.: Hypertree width and related hypergraph invariants. Eur. J. Comb. 28, 2167–2181 (2007)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Aggarwal, D., Mehta, S.K., Deogun, J.S.: Domination search on graphs with low dominating-target-number. In: Kratsch, D. (ed.) WG 2005. LNCS, vol. 3787, pp. 28–37. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Bodlaender, H.L.: A linear-time algorithm for finding tree-decompositions of small treewidth. SIAM J. Comput. 25, 1305–1317 (1996)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Dawar, A., Grohe, M., Kreutzer, S.: Locally excluding a minor. In: LICS, pp. 270–279. IEEE Computer Society, Los Alamitos (2007)Google Scholar
  5. 5.
    Demaine, E.D., Hajiaghayi, M.T., Kawarabayashi, K.: Algorithmic graph minor theory: Decomposition, approximation, and coloring. In: Proceedings of the 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2005), pp. 637–646. IEEE Computer Society, Los Alamitos (2005)CrossRefGoogle Scholar
  6. 6.
    Feige, U., Hajiaghayi, M., Lee, J.R.: Improved approximation algorithms for minimum weight vertex separators. SIAM J. Comput. 38, 629–657 (2008)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Fomin, F.V., Fraigniaud, P., Nisse, N.: Nondeterministic graph searching: from pathwidth to treewidth. Algorithmica 53, 358–373 (2009)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Fomin, F.V., Golovach, P.A., Thilikos, D.M.: Approximating acyclicity parameters of sparse hypergraphs. In: Albers, S., Marion, J.-Y. (eds.) STACS, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany. LIPIcs, vol. 3, pp. 445–456 (2009)Google Scholar
  9. 9.
    Fomin, F.V., Golovach, P.A., Thilikos, D.M.: Contraction bidimensionality: The accurate picture. In: Fiat, A., Sanders, P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 706–717. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. 10.
    Fomin, F.V., Kratsch, D., Müller, H.: On the domination search number. Discrete Appl. Math. 127, 565–580 (2003)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Fomin, F.V., Thilikos, D.M.: An annotated bibliography on guaranteed graph searching. Theor. Comput. Sci. 399, 236–245 (2008)MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    Gottlob, G., Leone, N., Scarcello, F.: Robbers, marshals, and guards: game theoretic and logical characterizations of hypertree width. J. Comput. System Sci. 66, 775–808 (2003)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Gottlob, G., Miklós, Z., Schwentick, T.: Generalized hypertree decompositions: NP-hardness and tractable variants. J. ACM 56, 1–32 (2009)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Kirousis, L.M., Papadimitriou, C.H.: Interval graphs and searching. Discrete Math. 55, 181–184 (1985)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Kirousis, L.M., Papadimitriou, C.H.: Searching and pebbling. Theoret. Comput. Sci. 47, 205–218 (1986)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Kreutzer, S., Ordyniak, S.: Distance d-Domination Games. In: Paul, C., Habib, M. (eds.) WG 2009. LNCS, vol. 5911, pp. 308–319. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  17. 17.
    LaPaugh, A.S.: Recontamination does not help to search a graph. J. Assoc. Comput. Mach. 40, 224–245 (1993)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Megiddo, N., Hakimi, S.L., Garey, M.R., Johnson, D.S., Papadimitriou, C.H.: The complexity of searching a graph. J. ACM 35, 18–44 (1988)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Mohar, B., Thomassen, C.: Graphs on surfaces. Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (2001)MATHGoogle Scholar
  20. 20.
    Parsons, T.D.: The search number of a connected graph. In: Proceedings of the Ninth Southeastern Conference on Combinatorics, Graph Theory, and Computing. Congress. Numer., Utilitas Math., vol. XXI, pp. 549–554 (1978)Google Scholar
  21. 21.
    Robertson, N., Seymour, P.D.: Graph minors. XVI. Excluding a non-planar graph. J. Combin. Theory Ser. B 89, 43–76 (2003)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Seymour, P.D., Thomas, R.: Graph searching and a min-max theorem for tree-width. J. Combin. Theory Ser. B 58, 22–33 (1993)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Fedor V. Fomin
    • 1
  • Petr A. Golovach
    • 2
  • Dimitrios M. Thilikos
    • 3
  1. 1.Department of InformaticsUniversity of BergenBergenNorway
  2. 2.School of Engineering and Computing SciencesDurham UniversityDurhamUK
  3. 3.Department of MathematicsUniversity of AthensAthensGreece

Personalised recommendations