DNA-Based Fixed Gain Amplifiers and Linear Classifier Circuits

  • David Yu Zhang
  • Georg Seelig
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6518)

Abstract

DNA catalysts have been developed as methods of amplifying single-stranded nucleic acid signals. The maximum turnover (gain) of these systems, however, often varies based on strand and complex purities, and has so far not been well-controlled. Here we introduce methods for controlling the asymptotic turnover of strand displacement-based DNA catalysts and show how these could be used to construct linear classifier systems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bloomfield, V.A., Crothers, D.M., Tinoco Jr., I.: Nucleic Acids: Structures, Properties, and Functions. University Science Books, Sausalito (2000)Google Scholar
  2. 2.
    SantaLucia, J., Hicks, D.: Annu. Rev. Biophys. Biomol. Struct. 33, 415 (2004)CrossRefGoogle Scholar
  3. 3.
    Yurke, B., Mills, A.P.: Genet. Prog. Evol. Mach. 4, 111 (2003)CrossRefGoogle Scholar
  4. 4.
    Zhang, D.Y., Winfree, E.: J. Am. Chem. Soc. 131, 17303 (2009)CrossRefGoogle Scholar
  5. 5.
    Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Science 314, 1585 (2006)CrossRefGoogle Scholar
  6. 6.
    Hagiya, M., Yaegashi, S., Takahashi, K.: Nanotechnology: Science and Computation, pp. 293–308 (2006)Google Scholar
  7. 7.
    Frezza, B.M., Cockroft, S.L., Ghadiri, M.R.: J. Am. Chem. Soc. 129, 14875 (2007)CrossRefGoogle Scholar
  8. 8.
    Qian, L., Winfree, E.: A Simple DNA Gate Motif for Synthesizing Large-Scale Circuits. In: Goel, A., Simmel, F.C., Sosík, P. (eds.) DNA 14. LNCS, vol. 5347, pp. 70–89. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Yurke, B., Turberfield, A.J., Mills, A.P., Simmel, F.C., Neumann, J.L.: Nature 406, 605 (2000)CrossRefGoogle Scholar
  10. 10.
    Bath, J., Turberfield, A.J.: Nat. Nanotech. 2, 275 (2007)CrossRefGoogle Scholar
  11. 11.
    Turberfield, A.J., Mitchell, J.C., Yurke, B., Mills, A.P., Blakey, M.I., Simmel, F.C.: Phys. Rev. Lett. 90, 118102 (2003)CrossRefGoogle Scholar
  12. 12.
    Bois, J.S., Venkataraman, S., Choi, H.M.T., Spakowitz, A.J., Wang, Z.G., Pierce, N.A.: Nuc. Acid Res. 33, 4090 (2005)CrossRefGoogle Scholar
  13. 13.
    Green, S.J., Lubrich, D., Turberfield, A.J.: Biophysical Journal 91, 2966 (2006)CrossRefGoogle Scholar
  14. 14.
    Seelig, G., Yurke, B., Winfree, E.: J. Am. Chem. Soc. 128, 12211 (2006)CrossRefGoogle Scholar
  15. 15.
    Zhang, D.Y., Turberfield, A.J., Yurke, B., Winfree, E.: Science 318, 1121 (2007)CrossRefGoogle Scholar
  16. 16.
    Yin, P., Choi, H.M.T., Calvert, C.R., Pierce, N.A.: Nature 451, 318 (2008)CrossRefGoogle Scholar
  17. 17.
    Zhang, D.Y., Winfree, E.: Nuc. Acid Res. (2010, pre-published online doi:10.1093/nar/gkq088) Google Scholar
  18. 18.
    Masu, H., Narita, A., Tokunaga, T., Ohashi, M., Aoyana, Y., Sando, S.: Angew. Chemie Int. Ed. 48, 9481 (2009)CrossRefGoogle Scholar
  19. 19.
    Xie, Z., Liu, S.J., Bleris, L., Benenson, Y.: Nuc. Acids Res. (2010, doi:10.1093/nar/gkq117)Google Scholar
  20. 20.
    Benenson, Y., Gil, B., Ben-Dor, U., Adar, R., Shapiro, E.: Nature 429, 423 (2004)CrossRefGoogle Scholar
  21. 21.
    Lu, J., et al.: Nature 435, 834 (2005)CrossRefGoogle Scholar
  22. 22.
    Rosenfeld, N., et al.: Nat. Biotech. 26, 462 (2008)CrossRefGoogle Scholar
  23. 23.
    Soloveichik, D., Seelig, G., Winfree, E.: Proc. Nat. Acad. Sci. (2010, pre-published online doi:10.1073/pnas.0909380107)Google Scholar
  24. 24.
    Zhang, D.Y.: Cooperative DNA strand displacement for DNA quantitation, detection, and logic (submitted, 2010)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • David Yu Zhang
    • 1
  • Georg Seelig
    • 2
  1. 1.California Institute of TechnologyPasadenaUSA
  2. 2.University of WashingtonSeattleUSA

Personalised recommendations