Abstract Probabilistic Automata

  • Benoît Delahaye
  • Joost-Pieter Katoen
  • Kim G. Larsen
  • Axel Legay
  • Mikkel L. Pedersen
  • Falak Sher
  • Andrzej Wąsowski
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6538)

Abstract

Probabilistic Automata (PAs) are a widely-recognized mathematical framework for the specification and analysis of systems with non-deterministic and stochastic behaviors. This paper proposes Abstract Probabilistic Automata (APAs), that is a novel abstraction model for PAs. In APAs uncertainty of the non-deterministic choices is modeled by may/must modalities on transitions while uncertainty of the stochastic behaviour is expressed by (underspecified) stochastic constraints. We have developed a complete abstraction theory for PAs, and also propose the first specification theory for them. Our theory supports both satisfaction and refinement operators, together with classical stepwise design operators. In addition, we study the link between specification theories and abstraction in avoiding the state-space explosion problem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Beneš, N., Křetínský, J., Larsen, K.G., Srba, J.: Checking thorough refinement on modal transition systems is EXPTIME-complete. In: Leucker, M., Morgan, C. (eds.) ICTAC 2009. LNCS, vol. 5684, pp. 112–126. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Caillaud, B., Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wąsowski, A.: Decision Problems for Interval Markov Chains (2010), http://www.cs.aau.dk/~mikkelp/doc/IMCpaper.pdf (Research report)
  3. 3.
    Caillaud, B., Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wąsowski, A.: Compositional design methodology with constraint Markov chains. In: QEST. IEEE, Los Alamitos (2010)Google Scholar
  4. 4.
    Caillaud, B., Delahaye, B., Larsen, K.G., Legay, A., Pedersen, M.L., Wąsowski, A.: Compositional design methodology with constraint Markov chains. Submitted to TCS. Elsevier, Amsterdam (2010)Google Scholar
  5. 5.
    Canetti, R., Cheung, L., Kaynar, D.K., Liskov, M., Lynch, N.A., Pereira, O., Segala, R.: Analyzing security protocols using time-bounded task-pioas. Discrete Event Dynamic Systems 18(1), 111–159 (2008)CrossRefMATHGoogle Scholar
  6. 6.
    Cattani, S., Segala, R.: Decision algorithms for probabilistic bisimulation. In: Brim, L., Jančar, P., Křetínský, M., Kučera, A. (eds.) CONCUR 2002. LNCS, vol. 2421, pp. 371–385. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Cheung, L., Lynch, N.A., Segala, R., Vaandrager, F.W.: Switched pioa: Parallel composition via distributed scheduling. TCS 365(1-2), 83–108 (2006)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Cheung, L., Stoelinga, M., Vaandrager, F.W.: A testing scenario for probabilistic processes. J. ACM 54(6) (2007)Google Scholar
  9. 9.
    de Alfaro, L., Henzinger, T.A.: Interface-based design. In: Engineering Theories of Software-intensive Systems. NATO Science Series: Mathematics, Physics, and Chemistry, vol. 195, pp. 83–104. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Delahaye, B., Katoen, J.-P., Larsen, K.G., Legay, A., Pedersen, M.L., Sher, F., Wąsowski, A.: Abstract probabilistic automata (2010), http://perso.bretagne.ens-cachan.fr/~delahaye/VMCAI11-long.pdf
  11. 11.
    Fecher, H., Leucker, M., Wolf, V.: Don’t know in probabilistic systems. In: Valmari, A. (ed.) SPIN 2006. LNCS, vol. 3925, pp. 71–88. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  12. 12.
    Jansen, D.N., Hermanns, H., Katoen, J.-P.: A probabilistic extension of uml statecharts. In: Damm, W., Olderog, E.-R. (eds.) FTRTFT 2002. LNCS, vol. 2469, pp. 355–374. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes. In: LICS, pp. 266–277. IEEE, Los Alamitos (1991)Google Scholar
  14. 14.
    Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes. In: LICS, pp. 266–277. IEEE, Los Alamitos (1991)Google Scholar
  15. 15.
    Katoen, J.-P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for continuous-time markov chains. In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 316–329. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  16. 16.
    Katoen, J.-P., Klink, D., Neuhäußer, M.R.: Compositional abstraction for stochastic systems. In: Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS, vol. 5813, pp. 195–211. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  17. 17.
    Larsen, K.G., Nyman, U., Wąsowski, A.: Modal I/O automata for interface and product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp. 64–79. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  18. 18.
    Larsen, K.G., Thomsen, B.: A modal process logic. In: LICS, pp. 203–210. IEEE, Los Alamitos (1988)Google Scholar
  19. 19.
    Larsen, K.G.: Modal specifications. In: AVMFSS, pp. 232–246. Springer, Heidelberg (1989)Google Scholar
  20. 20.
    Parma, A., Segala, R.: Axiomatization of trace semantics for stochastic nondeterministic processes. In: QEST, pp. 294–303. IEEE, Los Alamitos (2004)Google Scholar
  21. 21.
    Raclet, J.-B., Badouel, E., Benveniste, A., Caillaud, B., Legay, A., Passerone, R.: Modal interfaces: unifying interface automata and modal specifications. In: EMSOFT, pp. 87–96. ACM, New York (2009)CrossRefGoogle Scholar
  22. 22.
    Segala, R.: Probability and nondeterminism in operational models of concurrency. In: Baier, C., Hermanns, H. (eds.) CONCUR 2006. LNCS, vol. 4137, pp. 64–78. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  23. 23.
    Segala, R., Lynch, N.A.: Probabilistic simulations for probabilistic processes. NJC 2, 250–273 (1995)MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Benoît Delahaye
    • 1
  • Joost-Pieter Katoen
    • 2
  • Kim G. Larsen
    • 3
  • Axel Legay
    • 1
  • Mikkel L. Pedersen
    • 3
  • Falak Sher
    • 2
  • Andrzej Wąsowski
    • 4
  1. 1.INRIA/IRISARennesFrance
  2. 2.Software Modeling and Verification GroupRWTH Aachen UniversityGermany
  3. 3.Aalborg UniversityDenmark
  4. 4.IT University of CopenhagenDenmark

Personalised recommendations