Static Analysis of Finite Precision Computations

  • Eric Goubault
  • Sylvie Putot
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6538)


We define several abstract semantics for the static analysis of finite precision computations, that bound not only the ranges of values taken by numerical variables of a program, but also the difference with the result of the same sequence of operations in an idealized real number semantics. These domains point out with more or less detail (control point, block, function for instance) sources of numerical errors in the program and the way they were propagated by further computations, thus allowing to evaluate not only the rounding error, but also sensitivity to inputs or parameters of the program. We describe two classes of abstractions, a non relational one based on intervals, and a weakly relational one based on parametrized zonotopic abstract domains called affine sets, especially well suited for sensitivity analysis and test generation. These abstract domains are implemented in the Fluctuat static analyzer, and we finally present some experiments.


Global Error Interval Arithmetic Concrete Model Precision Computation Abstract Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Boldo, S., Filliâtre, J.-C.: Formal Verification of Floating-Point Programs. In: 18th IEEE International Symposium on Computer Arithmetic (June 2007)Google Scholar
  2. 2.
    Comba, J.L.D., Stolfi, J.: Affine arithmetic and its applications to computer graphics. In: SEBGRAPI 1993 (1993)Google Scholar
  3. 3.
    Conquet, E., Cousot, P., Cousot, R., Goubault, E., Ghorbal, K., Lesens, D., Putot, S., Turin, M.: Space software validation using abstract interpretation. In: Proceedings of DASIA (2009)Google Scholar
  4. 4.
    Cousot, P., Cousot, R.: Static determination of dynamic properties of programs. In: Proceedings of the Second International Symposium on Programming, Dunod, Paris, France, pp. 106–130 (1976)Google Scholar
  5. 5.
    Delmas, D., Goubault, E., Putot, S., Souyris, J., Tekkal, K., Védrine, F.: Towards an industrial use of FLUCTUAT on safety-critical avionics software. In: Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp. 53–69. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  6. 6.
    Zimmerman, P., et al.: The MPFR library,
  7. 7.
    IEEE 754 Standard for Binary Floating-Point Arithmetic, revision (2008),
  8. 8.
    Ghorbal, K., Goubault, E., Putot, S.: The zonotope abstract domain taylor1+. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 627–633. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Ghorbal, K., Goubault, E., Putot, S.: A logical product approach to zonotope intersection. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 212–226. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  10. 10.
    Goldberg, D.: What every computer scientist should know about floating-point arithmetic. ACM Comput. Surv. 23(1), 5–48 (1991)CrossRefGoogle Scholar
  11. 11.
    Goubault, É.: Static analyses of the precision of floating-point operations. In: Cousot, P. (ed.) SAS 2001. LNCS, vol. 2126, pp. 234–259. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  12. 12.
    Goubault, É., Martel, M., Putot, S.: Asserting the precision of floating-point computations: A simple abstract interpreter. In: Le Métayer, D. (ed.) ESOP 2002. LNCS, vol. 2305, pp. 209–212. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  13. 13.
    Goubault, É., Putot, S.: Weakly relational domains for the analysis of floating-point computations. Presented at NSAD (2005)Google Scholar
  14. 14.
    Goubault, É., Putot, S.: Static analysis of numerical algorithms. In: Yi, K. (ed.) SAS 2006. LNCS, vol. 4134, pp. 18–34. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  15. 15.
    Goubault, E., Putot, S.: Perturbed affine arithmetic for invariant computation in numerical program analysis. CoRR, abs/0807.2961 (2008)Google Scholar
  16. 16.
    Goubault, E., Putot, S.: A zonotopic framework for functional abstractions. CoRR, abs/0910.1763 (2009),
  17. 17.
    Goubault, É., Putot, S., Baufreton, P., Gassino, J.: Static analysis of the accuracy in control systems: Principles and experiments. In: Leue, S., Merino, P. (eds.) FMICS 2007. LNCS, vol. 4916, pp. 3–20. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Martel, M.: Propagation of roundoff errors in finite precision computations: A semantics approach. In: Le Métayer, D. (ed.) ESOP 2002. LNCS, vol. 2305, pp. 194–208. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  19. 19.
    Meurant, G.: The Lanczos and Conjugate Gradient Algorithm; from theory to finite precision computation. SIAM, Philadelphia (2006)CrossRefzbMATHGoogle Scholar
  20. 20.
    Miné, A.: Relational abstract domains for the detection of floating-point run-time errors. In: Schmidt, D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 3–17. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  21. 21.
    Miné, A.: Symbolic methods to enhance the precision of numerical abstract domains. In: Emerson, E.A., Namjoshi, K.S. (eds.) VMCAI 2006. LNCS, vol. 3855, pp. 348–363. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Monniaux, D.: The pitfalls of verifying floating-point computations. ACM Trans. Program. Lang. Syst. 30(3), 1–41 (2008)CrossRefGoogle Scholar
  23. 23.
    Muller, J.-M.: Arithmétique des Ordinateurs. Masson (1989)Google Scholar
  24. 24.
    Muller, J.-M., Brisebarre, N., de Dinechin, F., Jeannerod, C.-P., Lefèvre, V., Melquiond, G., Revol, N., Stehlé, D., Torres, S.: Handbook of Floating-Point Arithmetic. Birkhäuser, Boston (2010)CrossRefzbMATHGoogle Scholar
  25. 25.
    APRON Project. Numerical abstract domain library (2007),
  26. 26.
    Putot, S., Goubault, É., Martel, M.: Static analysis-based validation of floating-point computations. In: Alt, R., Frommer, A., Kearfott, R.B., Luther, W. (eds.) Dagstuhl Seminar 2003. LNCS, vol. 2991, pp. 306–313. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  27. 27.
    Skeel, R.: Roundoff error and the patriot missile. SIAM News (1992)Google Scholar
  28. 28.
    Sterbenz, P.H.: Floating point computation. Prentice-Hall, Englewood Cliffs (1974)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Eric Goubault
    • 1
  • Sylvie Putot
    • 1
  1. 1.Laboratory for the Modelling and Analysis of Interacting SystemsCEA LISTGif-sur-YvetteFrance

Personalised recommendations