The Meaning of It All

  • R. Nieuwenhuys
  • H. J. ten Donkelaar
  • C. Nicholson

Abstract

The preceding chapters of this work have presented a survey of our present knowledge of the structural organisation of the CNS of the various groups of vertebrates. This last chapter will highlight some of the major features revealed by our survey and offer some final comments.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnati LF, Zoli M, Stromberg I, Fuxe K (1995) Intercellular communication in the brain: wiring versus volume transmission. Neurosci 69:711–726Google Scholar
  2. Alvarez-Bolado G, Rosenfeld MG, Swanson LW (1995) Model of forebrain regionalization based on spatiotemporal patterns of POU-III homeobox gene expression, birth dates, and morphological features. J Comp Neurol 355:237–295PubMedGoogle Scholar
  3. Arbib MA (1965) Brains, machines and mathemathics. McGraw-Hill, New YorkGoogle Scholar
  4. Arends JJA, Zeigler HP (1991a) Organization of the cerebellum in the pigeon (Columba livia). I. Corticonuclear and corticovestibular connections. J Comp Neurol 306:221–244PubMedGoogle Scholar
  5. Arends JJA, Zeigler HP (1991b) Organization of the cerebellum in the pigeon (Columba livia). II. Projections of the cerebellar nuclei. J Comp Neurol 306:245–272PubMedGoogle Scholar
  6. Ariëns Kappers CU (1920/1921) Die vergleichende Anatomie des Nervensystems der Wirbeltiere und des Menschen. Bohn, HaarlemGoogle Scholar
  7. Ariëns Kappers CU (1929) The evolution of the nervous system in invertebrates, vertebrates and man. Bohn, HaarlemGoogle Scholar
  8. Ariëns Kappers CU (1947) Anatomie comparée du système nerveux. Bohn, HaarlemGoogle Scholar
  9. Ariëns Kappers CU, Carpenter FW (1911) Das Gehirn von Chimaera monstrosa. Folia Neurobiol 5:127–160Google Scholar
  10. Ariëns Kappers CU, Huber GC, Crosby EC (1936) The comparative anatomy of the nervous system of vertebrates, including man, vol 1. MacMillan, New YorkGoogle Scholar
  11. Arshavsky YuI, Orlovsky GN, Panchin YuV, Roberts A, Soffe SR (1993) Neuronal control of swimming locomotion: analysis of the pteropod mollusc Clione and embryos of the amphibian Xenopus. Trends Neurosci 16:227–233PubMedGoogle Scholar
  12. Atema J (1971) Structures and functions of the sense of taste in the catfish (Ictalurus natalis). Brain Behav Evol 4:273–294PubMedGoogle Scholar
  13. Barinaga M (1996) The cerebellum: movement coordinator or much more? Science 272:482–483PubMedGoogle Scholar
  14. Bear MF, Malenka RC (1994) Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 4:389–399PubMedGoogle Scholar
  15. Belekhova MG (1994) Thalamo-amygdalar auditory-somatic projections are ancient, conservative brain characters of amniotes. Zh Evol Biokhim Fiziol 30:454–473 (in Russian; English translation: J Evol Biochem Physiol 30:284-296)Google Scholar
  16. Belekhova MG, Zharskaja VD, Khachunts AS, Gaidaenko GV, Tumanova NL (1985) Connections of the mesencephalic, thalamic and telencephalic auditory centers in turtles. Some structural bases for audiosomatic interrelations. J Hirnforsch 26:127–152PubMedGoogle Scholar
  17. Bell CC, Szabo T (1986) Electroreception in mormyrid fish. Central anatomy. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 375–421Google Scholar
  18. Bell C, Bodznick D, Montgomery J, Bastian J (1997) The generation and subtraction of sensory expectations within cerebellum-like structures. Brain Behav Evol 50, Suppl 1:17–31PubMedGoogle Scholar
  19. Bergquist H (1932) Zur Morphologie des Zwischenhirns bei niederen Wirbeltieren. Acta Zool (Stockh) 13:57–303Google Scholar
  20. Bergquist H, Källen B (1954) Notes on the early histogenesis and morphogenesis of the central nervous system in vertebrates. J Comp Neurol 100:627–660PubMedGoogle Scholar
  21. Bergquist H, Källén B (1955) The archencephalic neuromery in Ambystoma punctatum. An experimental study. Acta Anat (Basel) 24:208–214Google Scholar
  22. Bertmar G (1981) Evolution of vomeronasal organs in vertebrates. Evolution 35:359–366Google Scholar
  23. Billo R, Wake MH (1987) Tentacle development in Dermopis mexicanus (Amphibia, Gymnophiona) with an hypothesis of tentacle origin. J Morphol 192:101–111Google Scholar
  24. Braitenberg V (1967) Is the cerebellar cortex a biological clock in the millisecond range? Prog Brain Res 25:334–46PubMedGoogle Scholar
  25. Breathnach AS (1960) The cetacean central nervous system. Biol Rev 35:187–230Google Scholar
  26. Bruce LL, Neary TJ (1995) The limbic system of tetrapods: a comparative analysis of cortical and amygdalar populations. Brain Behav Evol 46:224–234PubMedGoogle Scholar
  27. Bulfone A, Puelles L, Porteus MH, Frohman MA, Martin GR, Rubenstein JLR (1993) Spatially restricted expression of Dix-1, Dix-2 (Tes-1), Gbx-2, and Wnt-3 in the embryonic day 12.5 mouse forebrain defines potential transverse and longitudinal segmental boundaries. J Neurosci 13:3155–3172PubMedGoogle Scholar
  28. Bullock TH (1984) The future of comparative neurology. Am Zool 24:693–700Google Scholar
  29. Burr HS (1928) The central nervous system of Orthagoriscus mola. J Comp Neurol 45:33–128Google Scholar
  30. Butler AB (1994a) The evolution of the dorsal thalamus of jawed vertebrates, including mammals: cladistic analysis and a new hypothesis. Brain Res Rev 19:29–65PubMedGoogle Scholar
  31. Butler AB (1994b) The evolution of the dorsal pallium in the telencephalon of amniotes: cladistic analysis and a new hypothesis. Brain Res Rev 19:66–101PubMedGoogle Scholar
  32. Butler AB (1995) The dorsal thalamus of jawed vertebrates: a comparative viewpoint. Brain Behav Evol 46:209–223PubMedGoogle Scholar
  33. Butler AB, Northcutt RG (1992) Retinal projections in the bowfin, Amia calva: cytoarchitectonic and experimental analysis. Brain Behav Evol 39:169–194PubMedGoogle Scholar
  34. Christensen K (1927) The morphology of the brain of Sphenodon. Univ Iowa Stud 12:1–29Google Scholar
  35. Craigie EH (1930) Studies on the brain of the kiwi (Apteryx australis). J Comp Neurol 49:223–357Google Scholar
  36. Crosby EC (1917) The forebrain of Alligator mississippiensis. J Comp Neurol 27:325–402Google Scholar
  37. DeFelipe J, Jones EG (1988) Cajal on the cerebral cortex. Oxford University Press, New YorkGoogle Scholar
  38. Dexler H, Eger O (1911) Beiträge zur Anatomie des Säugerrückenmarkes. I: Halicore dugong Erxl. Morphol Jahrb 43:107–207Google Scholar
  39. Donoghue JP, Ebner FF (1981) The organization of thalamic projections to the parietal cortex of the Virginia opossum. J Comp Neurol 198:365–388PubMedGoogle Scholar
  40. Dow RS, Moruzzi G (1958) The physiology and pathology of the cerebellum. University of Minnesota, MinneapolisGoogle Scholar
  41. Dowling JE (1987) Retina, Vertebrate. In: Adelman G (ed) Encylopedia of neuroscience. vol II. Birkhäuser, Boston, pp 1061–1063Google Scholar
  42. Dubbeldam JL (1991) The avian and mammalian forebrain: correspondences and differences. In: Andrew RJ (ed) Neural and behavioural plasticity. The use of the domestic chick as a model. Oxford University Press, Oxford, pp 65–91Google Scholar
  43. Dumont JPC, Robertson RM (1986) Neuronal circuits: an evolutionary perspective. Science 233:849–853PubMedGoogle Scholar
  44. Durward A (1932) Observations on the cell masses in the cerebral hemisphere of the New Zealand kiwi (Apteryx australis). J Anat (Lond) 66:437–466Google Scholar
  45. Duvernoy H, Maillot Cl, Koritké JG (1970) La vascularisation de la moelle épinière chez le chat (Felis domestica). Les artères extramédullaires postérieures. J Hirnforsch 12: 419–437PubMedGoogle Scholar
  46. Ebbesson SOE, Schroeder DM (1971) Connections of the nurse shark’s telencephalon. Science 173:254–256PubMedGoogle Scholar
  47. Eccles JC, Ito M, Szentágothai J (1967) The cerebellum as a neuronal machine. Springer, Berlin Heidelberg New YorkGoogle Scholar
  48. Edinger L (1908) Vorlesungen über den Bau der nervösen Zentralorgane. II. Vergleichende Anatomie des Gehirns, 7th edn. Vogel, LeipzigGoogle Scholar
  49. Finger TE (1982) Somatotopy in the representation of the pectoral fin and free fin rays in the spinal cord of the sea robin, Prionotus carolinus. Biol Bull 163:154–161Google Scholar
  50. Grillner S, Wallén P, Brodin L, Lansner A (1991) Neuronal networks generating behavior in lamprey: circuitry, transmitters, membrane properties, and simulation. Annu Rev Neurosci 14:169–199PubMedGoogle Scholar
  51. Guthrie S (1995) The status of the neural segment. Trends Neurosci 18:74–79PubMedGoogle Scholar
  52. Haller B (1891) Über das Centralnervensystem von Orthagoriscus mola. Morphol Jahrb 17:198–268Google Scholar
  53. Haller von Hallerstein V (1934) Äußere Gliederung des Zentralnervensystems. In: Bolk L, Göppert E, Kallius E, Lubosch W (eds) Handbuch der vergleichenden Anatomie der Wirbeltiere, vol 2, part 1. Urban and Schwarzenberg, Berlin, pp 1–318Google Scholar
  54. Heffner RS, Masterton RB (1983) The role of the corticospinal tract in the evolution of human digital dexterity. Brain Behav Evol 23:165–183PubMedGoogle Scholar
  55. Heier P (1948) Fundamental principles in the structure of the brain. A study of the brain of Petromyzon fluviatilis. Acta Anat [Suppl] VI: 1–213Google Scholar
  56. Heiligenberg W, Keller CH, Metzner W, Kawasaki M (1991) Structure and function of neurons in the complex of the nucleus electrosensorius of the gymnotiform fish Eigenmannia: detection and processing of electric signals in social communication. J Comp Physiol [A] 169:151–164Google Scholar
  57. Herrick CJ (1910) The morphology of the forebrain in Amphibia and Reptilia. J Comp Neurol 20:413–547Google Scholar
  58. Herrick CJ (1921) A sketch of the origin of the cerebral hemispheres. J Comp Neurol 32:429–454Google Scholar
  59. Herrick CJ (1948) The brain of the tiger salamander. University of Chicago Press, ChicagoGoogle Scholar
  60. Holland PWH, Garcia-Fernández J (1996) Hox genes and chordate evolution. Dev Biol 173:382–395PubMedGoogle Scholar
  61. Holland PWH, Holland LZ, Williams NA, Holland ND (1992) An amphioxus homeobox gene: sequence conservation, spatial expression during development and insights into vertebrate evolution. Development 116:653–661PubMedGoogle Scholar
  62. Holmgren N (1922) Points of view concerning forebrain morphology in lower vertebrates. J Comp Neurol 34:391–440Google Scholar
  63. Ito M (1993) Synaptic plasticity in the cerebellar cortex and its role in motor learning. Can J Neurol Sci 20[Suppl 3]:S70–S74PubMedGoogle Scholar
  64. Jankowska E, Lindström S (1971) Morphological identification of Renshaw cells. Acta Physiol Scand 81:428–430PubMedGoogle Scholar
  65. Jansen J (1930) The brain of Myxine glutinosa. J Comp Neurol 49:359–507Google Scholar
  66. Jefferys JGR, Traub RD, Whittington MA (1996) Neuronal networks for induced ‘40 Hz’ rhythms. Trends Neurosci 19:202–208PubMedGoogle Scholar
  67. Jerison HJ (1973) Evolution of the brain and intelligence. Academic, New YorkGoogle Scholar
  68. Johnston JB (1906) The nervous system of vertebrates. Blakiston, PhiladelphiaGoogle Scholar
  69. Johnston JB (1911a) The telencephalon of selachians. J Comp Neurol 21:1–113Google Scholar
  70. Johnston JB (1911b) The telencephalon of ganoids and teleosts. J Comp Neurol 21:489–591Google Scholar
  71. Johnston JB (1915) Cell masses in the forebrain of the turtle, Cistudo Carolina. J Comp Neurol 26:475–479Google Scholar
  72. Källén B (1955) Notes on the mode of formation of brain nuclei during ontogenesis. CR Assoc Anat XLII:747–756Google Scholar
  73. Källén B (1962) Embryogenesis of brain nuclei in the chick telencephalon. Ergeb Anat Entwgesch 36:61–82Google Scholar
  74. Kandel ER, Schwartz JH, Jessell TM (1995) Essentials of neural science and behavior. Appleton and Lange, NorwalkGoogle Scholar
  75. Kanwal JS, Finger TE (1992) Central representation and projections of gustatory systems. In: Hara TJ (ed) Fish chemoreception. Chapman and Hall, London, pp 79–102Google Scholar
  76. Karten HJ (1969) The organization of the avian telencephalon and some speculations on the phylogeny of the amniote telencephalon. Ann N Y Acad Sci 167:164–179Google Scholar
  77. Kettenmann H, Ransom BR (eds) 1995) Neuroglia. Oxford University Press, OxfordGoogle Scholar
  78. Klinkhachorn PS, Haines DE, Culberson JL (1984a) Cerebellar cortical efferent fibers in the North American opossum, Didelphis virginiana. I. The anterior lobe. J Comp Neurol 227:424–438PubMedGoogle Scholar
  79. Klinkhachorn PS, Haines DE, Culberson JL (1984b) Cerebellar cortical efferent fibers in the North American opossum, Didelphis virginiana. II. The posterior vermis. J Comp Neurol 227:439–451PubMedGoogle Scholar
  80. Krubitzer L, Manger P, Pettigrew P, Calford M (1995) Organization of somatosensory cortex in monotremes: in search of the prototypical plan. J Comp Neurol 351:261–306PubMedGoogle Scholar
  81. Kuhlenbeck H (1929a) Über die Grundbestandteile des Zwischenhirnbauplans der Anamnier. Morphol Jahrb 63:50–95Google Scholar
  82. Kuhlenbeck H (1929b) Die Grundbestandteile des Endhirns im Lichte der Bauplanlehre. Anat Anz 67:1–51Google Scholar
  83. Kuhlenbeck H (1973) The central nervous system of vertebrates, vol 3, part II: overall morphologic pattern. Karger, BaselGoogle Scholar
  84. Kuhlenbeck H, Malewitz TD, Beasley AB (1967) Further observations on the morphology of the forebrain in Gymnophiona, with reference to the topologic vertebrate forebrain pattern. In: Hassler R, Stephan H (eds) Evolution of the forebrain. Plenum, New York, pp 9–19Google Scholar
  85. Künzle H (1985) The cerebellar and vestibular nuclear complexes in the turtle. II. Projections to the prosencephalon. J Comp Neurol 242:122–133PubMedGoogle Scholar
  86. Kusuma A, ten Donkelaar HJ, Nieuwenhuys R (1979) Intrinsic organization of the spinal cord. In: Gans C, Northcutt RG, Ulinski P (eds) Biology of the reptilia, vol 10: neurology B. Academic, London, pp 59–109Google Scholar
  87. Kuypers HGJM (1981) Anatomy of the descending pathways. In: Brookhart JM, Mountcastle VB (eds) Handbook of physiology. The nervous system, vol II: motor control. American Physiological Society, Bethesda, pp 597–666Google Scholar
  88. Lamb CF, Caprio J (1993) Diencephalic gustatory connections in the channel catfish. J Comp Neurol 337:400–418PubMedGoogle Scholar
  89. Larseil O (1967) The comparative anatomy and histology of the cerebellum from myxinoids through birds. University of Minnesota Press, MinneapolisGoogle Scholar
  90. Lawrence DG, Kuypers HGJM (1968a) The functional organization of the motor system in the monkey. I. The effects of bilateral pyramidal lesions. Brain 91:1–14PubMedGoogle Scholar
  91. Lawrence DG, Kuypers HGJM (1968b) The functional organization of the motor system in the monkey. II. The effects of lesions of the descending brainstem pathways. Brain 91:15–36PubMedGoogle Scholar
  92. Lende RA (1963a) Sensory representation in the cerebral cortex of the opossum (Didelphis virginiana). J Comp Neurol 121:395–414PubMedGoogle Scholar
  93. Lende RA (1963b) Motor representation in the cerebral cortex of the opossum (Didelphis virginiana). J Comp Neurol 121:405–415PubMedGoogle Scholar
  94. Leonard RB, Willis WD (1979) The organization of the electromotor nucleus and extraocular motor nuclei in the stargazer (Astroscopus y-graecum). J Comp Neurol 183:397–414PubMedGoogle Scholar
  95. Llinás R (ed) (1969) Neurobiology of cerebellar evolution and development. American Medical Association, ChicagoGoogle Scholar
  96. Llinás RR, Walton KD (1990) Cerebellum. In: Shepherd GM (ed) The synaptic organization of the brain, 3rd edn. Oxford University Press, New York, pp 214–245Google Scholar
  97. Loo YT (1931) The forebrain of the opossum Didelphys virginiana. Part II: histology. J Comp Neurol 52:1–148Google Scholar
  98. Lund JS (1988) Anatomical organization of macaque monkey striate cortex. Annu Rev Neurosci 11:253–288PubMedGoogle Scholar
  99. Macdonald R, Xu Q, Barth KA, Mikkola I, Holder N, Fjose A, Krauss S, Wilson SW (1994) Regulatory gene expression boundaries demarcate sites of neuronal differentiation in the embryonic zebrafish forebrain. Neuron 13:1039–1053PubMedGoogle Scholar
  100. Maren S, Baudry M (1995) Properties and mechanisms of long-term synaptic plasticity in the mammalian brain: relationships to learning and memory. Neurobiol Learn Mem 63:1–18PubMedGoogle Scholar
  101. Marín O, González A, Smeets WJAJ (1997a) Basal ganglia organization in amphibians: afferent connections to the striatum and the nucleus accumbens. J Comp Neurol 378:16–49PubMedGoogle Scholar
  102. Marín O, González A, Smeets WJAJ (1997b) Basal ganglia organization in amphibians: efferent connections of the striatum and the nucleus accumbens. J Comp Neurol 380:23–50PubMedGoogle Scholar
  103. Martin GF, Hamel EG (1967) The striatum of the opossum (Didelphis virginiana). J Comp Neurol 131:491–516PubMedGoogle Scholar
  104. Masai H, Sato Y, Aoki M (1973) The brain of Mitsukurina owstoni. J Hirnforsch 14:493–500PubMedGoogle Scholar
  105. Medina L, Reiner A (1995) Neurotransmitter organization and connectivity of the basal ganglia in vertebrates: implications for the evolution of basal ganglia. Brain Behav Evol 46:235–258PubMedGoogle Scholar
  106. Meek J (1992) Why run parallel fibers parallel? — Teleostean Purkinje cells as possible coincidence detectors, in a timing device subserving spatial coding of temporal differences. Neuroscience 48:249–283PubMedGoogle Scholar
  107. Mickle JP (1976) Efferent connections of the caudate nucleus in the Virginia opossum. J Comp Neurol 166:373–386PubMedGoogle Scholar
  108. Millot J, Anthony J (1965) Anatomie de Latimeria chalumnae, vol II: système nerveux et organes de sens. Centre National des Rechèrches Scientifiques, ParisGoogle Scholar
  109. Moodie RL (1915) A new fish brain from the coal measures of Kansas, with a review of other fossil brains. J Comp Neurol 25:135–181Google Scholar
  110. Mountcastle VB (1979) An organizing principle for cerebral function: the unit module and the distributed system. In: Schmitt FO, Worden FG (eds) The neurosciences fourth study program. MIT Press, Cambridge, pp 21–42Google Scholar
  111. Muñoz A, Muñoz M, González A, ten Donkelaar HJ (1997) Spinal ascending pathways in amphibians: cells of origin and main targets. J Comp Neurol 378:205–228PubMedGoogle Scholar
  112. Newman EA (1995) Glial cell regulation of extracellular potassium. In: Kettenmann H, Ransom BR (eds) Neuroglia. Oxford University Press, New York, pp 717–731Google Scholar
  113. Newman E, Reichenbach A (1996) The Müller cell: a functional element of the retina. Trends Neurosci 19:307–312PubMedGoogle Scholar
  114. Nieuwenhuys R (1962) Trends in the evolution of the actinopterygian forebrain. J Morphol 111:65–88Google Scholar
  115. Nieuwenhuys R (1965) The forebrain of the crossopterygian Latimeria chalumnae Smith. J Morphol 117:1–24PubMedGoogle Scholar
  116. Nieuwenhuys R (1994) The neocortex. An overview of its evolutionary development, structural organization and synaptology. Anat Embryol (Berl) 190:307–337Google Scholar
  117. Nieuwenhuys R, Nicholson C (1969) Aspects of the histology of the cerebellum of mormyrid fishes. In: Llinás R (ed) Neurobiology of cerebellar evolution and development. American Medical Association, Chicago, pp 135–169Google Scholar
  118. Nieuwenhuys R, Meek J (1990a) The telencephalon of actinopterygian fishes. In: Jones, EG, Peters A (eds) Cerebral cortex, vol 8A. Plenum, New York, pp 31–73Google Scholar
  119. Nieuwenhuys R, Meek J (1990b) The telencephalon of sarcopterygian fishes. In: Jones, EG, Peters A (eds) Cerebral cortex, vol 8A. Plenum, New York, pp 75–106Google Scholar
  120. Nissl F (1885) Ueber die Untersuchungsmethoden der Großhirnrinde. Neurol Zentralbl 4:500–501Google Scholar
  121. Northcutt RG (1977) Elasmobranch central nervous system organization and its possible evolutionary significance. Am Zool 17:411–429Google Scholar
  122. Northcutt RG (1981) Evolution of the telencephalon in non-mammals. Annu Rev Neurosci 4:301–350PubMedGoogle Scholar
  123. Northcutt RG (1984) Evolution of the vertebrate central nervous system: patterns and processes. Am Zool 24: 701–716Google Scholar
  124. Northcutt RG (1986) Lungfish neural characters and their bearing on sarcopterygian phylogeny. J Morphol, Suppl 1:277–297Google Scholar
  125. Northcutt RG (1987) Evolution of the vertebrate brain. In: Adelman G (ed) Encyclopedia of neuroscience, vol I. Birkhäuser, Boston, pp 415–418Google Scholar
  126. Northcutt RG (1995) The forebrain of gnathostomes: in search of a morphotype. Brain Behav Evol 46:275–318PubMedGoogle Scholar
  127. Northcutt RG, Kaas JH (1995) The emergence and evolution of mammalian neocortex. Trends Neurosci 18:373–379PubMedGoogle Scholar
  128. Northcutt RG, Kicliter E (1980) Organization of the amphibian telencephalon. In: Ebbesson SOE (ed) Comparative neurology of the telencephalon. Plenum, New York, pp 203–255Google Scholar
  129. Northcutt RG, Wicht H (1997) Afferent and efferent connections of the lateral and medial pallia of the silver lamprey. Brain Behav Evol 49:1–19)PubMedGoogle Scholar
  130. Northcutt RG, Reiner A, Karten HJ (1988) Immunohistochemical study of the telencephalon of the spiny dogfish, Squalus acanthias. J Comp Neurol 277:250–267PubMedGoogle Scholar
  131. Parker TJ (1891) Observations on the anatomy and development of Apteryx. Philos Trans R Soc [B] 182:25–134Google Scholar
  132. Pilleri (1969) Das hirnanatomische Institut der psychiatrischen Universitätsklinik Bern. Hirnanatomisches Institut, BernGoogle Scholar
  133. Platel R (1989) L’encéphalisation chez le Tuatara de Nouvelle-Zélande Sphenodon punctatus Gray (Lepidosauria, Sphenodonta). Étude quantifiée des principales subdivisions encéphaliques. J Hirnforsch 30:325–337PubMedGoogle Scholar
  134. Porter R, Lemon R (1993) Corticospinal function and voluntary movements. Clarendon, OxfordGoogle Scholar
  135. Prasada Rao PD, Jadhao AG, Sharma SC (1987) Descending projection neurons to the spinal cord of the goldfish, Carassius auratus. J Comp Neurol 265:96–108Google Scholar
  136. Puelles L (1995) A segmental morphological paradigm for understanding vertebrate forebrains. Brain Behav Evol 46:319–337PubMedGoogle Scholar
  137. Puelles L, Robles C, Martínez-de-la-Torre M, Martínez S (1994) New subdivision schema for the avian torus semi-circularis: neurochemical maps in the chick. J Comp Neurol 340:98–125PubMedGoogle Scholar
  138. Rabl-Rückhard H (1883) Das Grosshirn der Knochenfische und seine Anhangsgebilde. Arch Anat Physiol Anat Abt (Lpz) 279-322Google Scholar
  139. Rakic P (1979) Genetic and epigenetic determinants of local neuronal circuits in the mammalian central nervous system. In: Schmitt FO, Worden FG (eds) The neurosciences fourth study program. MIT Press, Cambridge, pp 109–127Google Scholar
  140. Ramón Y Cajal S (1909) Histologie du système nerveux de l’homme et des vertébrés. Tôme I. Malone, Paris (reprinted by CSIC, Madrid 1955; English translation published by Oxford University Press, New York, 1995)Google Scholar
  141. Ramön y Cajal S (1911) Histologie du système nerveux de l’homme et des vertébrés. Tôme II. Malone, Paris (reprinted by CSIC, Madrid 1955; English translation published by Oxford University Press, New York, 1995)Google Scholar
  142. Raymond JL, Lisberger SG, Mauk MD (1996) The cerebellum: a neuronal learning machine? Science 272:1126–1131PubMedGoogle Scholar
  143. Rehkämper G, Zilles K (1991) Parallel evolution in mammalian and avian brains: comparative cytoarchitectonic and cytochemical analysis. Cell Tissue Res 263:3–28PubMedGoogle Scholar
  144. Rehkämper G, Zilles K, Schleicher A (1985) A quantitative approach to cytoarchitectonics. X. The areal pattern of the neostriatum in the domestic pigeon, Columba livia f.d. A cyto-and myeloarchitectonical study. Anat Embryol (Berl) 171:345–355Google Scholar
  145. Reiner A, Northcutt RG (1987) An immunohistochemical study of the telencephalon of the African lungfish. J Comp Neurol 256:463–481PubMedGoogle Scholar
  146. Rendahl H (1924) Embryologische und morphologische Studien über das Zwischenhirn beim Huhn. Acta Zool (Stockh) 5:241–344Google Scholar
  147. Retzius G (1906) Das Affenhirn in bildlicher Darstellung. Fischer, JenaGoogle Scholar
  148. Roberts BL, Ryan KP (1975) Cytological features of the giant neurons controlling electric discharge in the ray Torpedo. J Mar Biol Assoc UK 55:123–131Google Scholar
  149. Romer AS (1962) The vertebrate body. Saunders, PhiladelphiaGoogle Scholar
  150. Ronan M (1989) Origins of the descending spinal projections in petromyzontid and myxinoid agnathans. J Comp Neurol 281:54–68PubMedGoogle Scholar
  151. Ronan M, Northcutt RG (1985) The origins of descending spinal projections in lepidosirenid lungfishes. J Comp Neurol 241:435–444PubMedGoogle Scholar
  152. Roth G, Nishikawa KC, Naujoks-Manteuffel C, Schmidt A, Wake DB (1993) Paedomorphosis and simplification in the nervous system of salamanders. Brain Behav Evol 42:137–170PubMedGoogle Scholar
  153. Rudebeck B (1945) Contributions to forebrain morphology in Dipnoi. Acta Zool (Stockh) 26:9–156Google Scholar
  154. Scheibel ME, Scheibel AB (1971) Inhibition and the Renshaw cell. A structural critique. Brain Behav Evol 4:53–93PubMedGoogle Scholar
  155. Schmitt FO, Worden FG (1979) The neurosciences fourth study program. MIT Press, CambridgeGoogle Scholar
  156. Schroeder DM, Ebbesson SOE (1974) Nonolfactory telencephalic afferents in the nurse shark (Ginglymostoma cirratum). Brain Behav Evol 9:121–155PubMedGoogle Scholar
  157. Segev I (1992) Single neurone models: oversimple, complex and reduced. Trends Neurosci 15:414–421PubMedGoogle Scholar
  158. Shepherd GM (1979) The synaptic organization of the brain, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  159. Shepherd GM (1990) (ed) The synaptic organization of the brain, 3rd edn. Oxford University Press, New YorkGoogle Scholar
  160. Shepherd GM, Koch C (1990) Introduction to synaptic circuits. In: Shepherd GM (ed) The synaptic organization of the brain, 3rd edn. Oxford University Press, New York, pp 3–31Google Scholar
  161. Sherrington C (1952) The integrative action of the nervous system. Cambridge University Press, CambridgeGoogle Scholar
  162. Singer M (1962) The brain of the dog in section. Saunders, PhiladelphiaGoogle Scholar
  163. Singer W, Gray CM (1995) Visual feature integration and the temporal correlation hypothesis. Annu Rev Neurosci 18:555–586PubMedGoogle Scholar
  164. Smeets WJAJ (1990) The telencephalon of cartilaginous fishes. In: Jones EG, Peters A (eds) Cerebral cortex, vol 8A: comparative structure and evolution of cerebral cortex, part I. Plenum, New York, pp 3–30Google Scholar
  165. Smeets WJAJ, Reiner A (1994) Phylogeny and development of catecholamine systems in the CNS of vertebrates. Cambridge University Press, CambridgeGoogle Scholar
  166. Smeets WJAJ, Timerick SJB (1981) Cells of origin of pathways descending to the spinal cord in two chondrichthyans, the shark Scyliorhinus canicula and the ray Raja clavata. J Comp Neurol 202:473–491PubMedGoogle Scholar
  167. Sterling P (1990) Retina. In: Shepherd GM (ed) The synaptic organization of the brain, 3rd edn. Oxford University Press, New York, pp 170–213Google Scholar
  168. Stevens CF (1966) Neurophysiology: a primer. Wiley, New YorkGoogle Scholar
  169. Stingelin W (1958) Vergleichend morphologische Untersuchungen am Vorderhirn der Vögel auf cytologischer und cytoarchitektonischer Grundlage. Helbing and Lichtenhahn, BaselGoogle Scholar
  170. Striedter GF (1992) Phylogenetic changes in the connections of the lateral preglomerular nucleus in ostariophysan teleosts: a pluralistic view of brain evolution. Brain Behav Evol 39:329–357PubMedGoogle Scholar
  171. Swazey JP (1969) Reflexes and motor integration: Sherrington’s concept of integrative action. Harvard University Press, CambridgeGoogle Scholar
  172. Szentágothai J (1979) Local neuron circuits of the cortex. In: Schmitt FO, Worden FG (eds) The neurosciences fourth study program. MIT Press, Cambridge, pp 399–415Google Scholar
  173. ten Donkelaar HJ (1982) Organization of descending pathways to the spinal cord in amphibians and reptiles. Prog Brain Res 57:25–67PubMedGoogle Scholar
  174. ten Donkelaar HJ (1988) Evolution of the red nucleus and rubrospinal tract. Behav Brain Res 28:9–20PubMedGoogle Scholar
  175. Tensen J (1927) Einige Bemerkungen über das Nervensystem von Pipa pipa. Acta Zool 8:151–159Google Scholar
  176. Tobias TJ, Ebner FF (1973) Thalamocortical projections from the mediodorsal nucleus in the Virginia opossum. Brain Res 52:79–96PubMedGoogle Scholar
  177. Ulinski PS, Margoliash D (1990) Neurobiology of the reptile-bird transition. In: Jones EG, Peters A (eds) Cerebral cortex, vol 8A: comparative structure and evolution of cerebral cortex, part I. Plenum, New York, pp 217–265Google Scholar
  178. Veenman CL, Wild JM, Reiner A (1995) Organization of the avian ‘corticostriatal’ projection system: a retrograde and anterograde pathway tracing study in pigeons. J Comp Neurol 354:87–126PubMedGoogle Scholar
  179. Webster DMS, Rogers LJ, Pettigrew JD, Steeves JD (1990) Origins of descending spinal pathways in prehensile birds: do parrots have a homologue to a corticospinal tract of mammals? Brain Behav Evol 36:216–226PubMedGoogle Scholar
  180. Wicht H (1996) The brains of lampreys and hagfishes: characteristics, characters, and comparisons. Brain Behav Evol 48:248–261PubMedGoogle Scholar
  181. Wicht H, Himstedt W (1990) Brain stem projections to the telencephalon in two species of amphibians, Triturus alpestris (Urodela) and Ichthyophis kohtaoensis (Gymnophiona). Exp Brain Res Series 19:43–55Google Scholar
  182. Wicht H, Northcutt RG (1994) An immunohistochemical study of the telencephalon and the diencephalon in a myxinoid jawless fish, the Pacific hagfish, Eptatretus stouti. Brain Behav Evol 43:140–161PubMedGoogle Scholar
  183. Willis WD (1971) The case for the Renshaw cell. Brain Behav Evol 4:5–52PubMedGoogle Scholar
  184. Witkovsky P, Nicholson C, Rice ME, Bohmaker K, Meller E (1993) Extracellular dopamine concentration in the retina of the clawed frog, xenopus-laevis. Proc Natl Acad Sci U S A 90:5667–5671PubMedCentralPubMedGoogle Scholar
  185. Zilles K, Schleicher A, Kretschman HJ (1978) A quantitative approach to cytoarchitectonics. I. The areal pattern of the cortex of Tupaia belangeri. Anat Embryol (Berl) 153:195–212Google Scholar
  186. Zilles K, Stephan H, Schleicher A (1982) Quantitative cytoarchitectonics of the cerebral cortices of several prosimian species. In: Armstrong E, Falk D (eds) Primate brain evolution. Methods and concepts. Plenum, New York, pp 177–201Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • R. Nieuwenhuys
  • H. J. ten Donkelaar
  • C. Nicholson

There are no affiliations available

Personalised recommendations