Advertisement

Abstract

The present chapter is devoted to the central nervous system of holostean and teleostean fishes. Holostean species are restricted to only two genera, i.e. Lepisosteus (the gars), with seven species, and Amia, with a single species, i.e. Amia calva, the bowfin. These are extants of a once abundant group of bony fishes that was largely replaced in the late Mesozoic and Cenozoic era by the expanding and now dominating Teleostei.

References

  1. Airhart MJ, Kriebel RM (1984) Retinal terminals in the goldfish optic tectum: identification and characterization. J Comp Neurol 226:377–390PubMedGoogle Scholar
  2. Airhart MJ, Kriebel RM (1985) Telencephalic terminals in the major retinal synaptic lamina of the goldfish optic tectum. Brain Res 336:363–367PubMedGoogle Scholar
  3. Airhart MJ, Shirt JO, Kriebel RM (1988) Telencephalic projections to the goldfish hypothalamus: an anterograde degeneration study. Brain Res Bull 20:503–514PubMedGoogle Scholar
  4. Al-Akel AS, Guthrie DM, Banks JR (1986) Motor responses to localized electrical stimulation of the tectum in the freshwater perch (Perca fluviatilis). Neuroscience 19:1381–1391PubMedGoogle Scholar
  5. Allum JHJ, Greef NG, Tokonaga A (1981) Projections to the rostral and caudal abducens nuclei in the goldfish. In: Fuchs AF, Becker W (eds) Progress in oculomotor research. Elsevier, Amsterdam, pp 253–262Google Scholar
  6. Alonso JR, Lara J, Miguel JJ, Aijón J (1987) Ruffed cells in the olfactory bulb of freshwater teleosts. I. Golgi impregnation. J Anat 155:101–107PubMedGoogle Scholar
  7. Alonso JR, Coveñas R, Lara J (1989a) Distribution of vasoactive intestinal polypeptide-like immunoreactivity in the olfactory bulb of the rainbow trout (Salmo gairdneri). Brain Res 490:385–389PubMedGoogle Scholar
  8. Alonso JR, Coveñas R, Lara J, Arèvalo R, de Léon M, Aijon J (1989b) Tyrosine hydroxylase immunoreactivity in a subpopulation of granule cells in the olfactory bulb of teleost fish. Brain Behav Evol 34:318–324PubMedGoogle Scholar
  9. Alonso JR, Arèvalo R, Briñòn JG, Lara J, Wervaga E, Aijon J (1992) Parvalbumin immunoreactive neurons and fibres in the teleost cerebellum. Anat Embryol (Berl) 185:355–361Google Scholar
  10. Amano M, Oka Y, Aida K, Okumoto N, Kawashima S, Hasegawa Y (1991) Immunocytochemical demonstration of salmon GnRH and chicken GnRH-II in the brain of masu salmon, Oncorhynchus masou. J Comp Neurol 314:587–597PubMedGoogle Scholar
  11. Andres KH, von During M, Petrasch E (1988) The fine structure of ampullary and tuberous electroreceptors in the South American blind catfish Pseudocetopsis spec. Anat Embryol (Berl) 177:523–535Google Scholar
  12. Anglade I, Zandbergen T, Kah O (1993) Origin of the pituitary innervation in the goldfish. Cell Tissue Res 273:345–355PubMedGoogle Scholar
  13. Anken RH, Rahmann H (1994) Brain atlas of the adult swordtail fish Xiphophorus helleri and of certain developmental stages. Fischer, StuttgartGoogle Scholar
  14. Arévalo R, Alonso JR, Briñón JG, García-Ojeda E, Velasco A, Lara J, Aijón J (1992) An atlas of the brain of the tench (Tinca tinca L. 1758; Cyprinidae, teleostei). J Hirnforsch 33:487–497PubMedGoogle Scholar
  15. Ariëns Kappers CU, Huber GC, Crosby EC (1936) The comparative anatomy of the nervous system of vertebrates, including man, 2 vols. MacMillan, New York (reprinted in 3 vols., 1967. Hafner, New YorkGoogle Scholar
  16. Atema J (1971) Structures and functions of the sense of taste in the catfish (Ictalurus natalis). Brain Behav Evol 4:273–294PubMedGoogle Scholar
  17. Atema J, Fay RR, Popper AN, Tavolga WN (eds) (1988) Sensory biology of aquatic animals. Springer, Berlin Heidelberg New YorkGoogle Scholar
  18. Audet C, Chevalier G (1981) Monoaminergic innervation of the caudal neurosecretory system of the brook trout Salvelinus fontinalis in relation to osmotic stimulation. Gen Comp Endocrinol 45:189–203PubMedGoogle Scholar
  19. Auerbach AA, Bennett MVL (1969a) Chemically mediated transmission at a giant fiber synapse in the central nervous system of a vertebrate. J Gen Physiol 53:183–209PubMedCentralPubMedGoogle Scholar
  20. Auerbach AA, Bennett MVL (1969b) A rectifying electrotonic synapse in the central nervous system of a vertebrate. J Gen Physiol 53:211–237PubMedCentralPubMedGoogle Scholar
  21. Baillet-Derbin C (1984) Identification of spinal motoneurones in the weakly electric fish, Eigenmannia virescens. Brain Res 295:65–76PubMedGoogle Scholar
  22. Ballintijn CM, Alink GM (1977) Identification of respiratory motor neurons in the carp and determination of their firing characteristics and interconnections. Brain Res 136:261–276PubMedGoogle Scholar
  23. Ballintijn CM, Roberts BL, Luiten PGM (1983) Respiratory responses to stimulation of branchial vagus nerve ganglia of a teleost fish. Respir Physiol 51:241–257PubMedGoogle Scholar
  24. Bamford OS (1974) Respiratory neurones in rainbow trout (Salmo gairdneri). Comp Biochem Physiol 48A:77–83Google Scholar
  25. Barry MA, Bennett MVL (1990) Projections of giant fibers, a class of reticular interneurons, in the brain of the silver hatchetfish. Brain Behav Evol 36:391–400PubMedGoogle Scholar
  26. Bartelmez GW (1915) Mauthner’s cell and the nucleus motorius tegmenti. J Comp Neurol 25:87–129Google Scholar
  27. Bass AH (1981a) Organization of the telencephalon in the channel catfish, Ictalurus punctatus. J Morphol 169:71–90Google Scholar
  28. Bass AH (1981b) Olfactory bulb efferents in the channel catfish, Ictalurus punctatus. J Morphol 169:91–111Google Scholar
  29. Bass AH (1981c) Telencephalic efferents in the channel catfish, Ictalurus punctatus: projections to the olfactory bulb and optic tectum. Brain Behav Evol 19:1–16PubMedGoogle Scholar
  30. Bass AH (1982) Evolution of the vestibulolateral lobe of the cerebellum in electroreceptive and non electroreceptive teleosts. J Morphol 174:335–348Google Scholar
  31. Bass AH (1985) Sonic motor pathways in teleost fishes: a comparative HRP study. Brain Behav Evol 27:115–131PubMedGoogle Scholar
  32. Bass AH (1986a) Steroid-sensitive neuroeffector pathways for sonic and electric communication. Brain Behav Evol 28:7–21PubMedGoogle Scholar
  33. Bass AH (1986b) Electric organs revisited. Evolution of a vertebrate communication and orientation organ. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 13–70Google Scholar
  34. Bass AH (1989) Evolution of vertebrate motor systems for acoustic and electric communication: peripheral and central elements. Brain Behav Evol 33:237–247PubMedGoogle Scholar
  35. Bass AH (1990) Sounds from the intertidal zone: vocalizing fish. Bioscience 40:249–258Google Scholar
  36. Bass AH (1992) Dimorphic male brains and alternative reproductive tactics in a vocalizing fish. Trends Neurosci 15:139–145PubMedGoogle Scholar
  37. Bass AH, Andersen K (1991) Inter-and intrasexual dimorphisms in the vocal control system of a teleost fish: motor axon number and size. Brain Behav Evol 37:204–214PubMedGoogle Scholar
  38. Bass AH, Baker R (1991) Evolution of homologous vocal control traits. Brain Behav Evol 38:240–254PubMedGoogle Scholar
  39. Bass AH, Hopkins CD (1982) Comparative aspects of brain organization of an African ‘wave’ electric fish, Gymnarchus niloticus. J Morphol 174:313–334Google Scholar
  40. Bass AH, Hopkins CD (1983) Hormonal control of sexual differentiation: changes in electric organ discharge wave form. Science 220:971–974PubMedGoogle Scholar
  41. Bass AH, Hopkins CD (1985) Hormonal control of sex differences in the electric organ discharge (EOD) of mormyrid fishes. J Comp Physiol 156:587–604Google Scholar
  42. Bass AH, Marchaterre MA (1989a) Sound-generating (sonic) motor system in a teleost fish (Porichthys notatus): sexual polymorphism in the ultrastructure of myofibrils. J Comp Neurol 286:141–153PubMedGoogle Scholar
  43. Bass AH, Marchaterre MA (1989b) Sound-generating (sonic) motor system in a teleost fish (Porichthys notatus): sexual polymorphism and general synaptology of sonic motor nucleus. J Comp Neurol 286:154–169PubMedGoogle Scholar
  44. Bass AH, Segil N, Kelley DB (1986) Androgen binding in the brain and electric organ of a mormyrid fish. J Comp Physiol [A] 159:535–544Google Scholar
  45. Bastian J (1974) Electrosensory input to the corpus cerebelli of the high frequency electric fish Eigenmannia virescens. J Comp Physiol 90:1–24Google Scholar
  46. Bastian J (1975) Receptive fields of cerebellar cells receiving exteroceptive input in a gymnotid fish. J Neurophysiol 38:285–299PubMedGoogle Scholar
  47. Bastian J (1976) The range of electrolocation: a comparison of electroreceptor responses and the responses of cerebellar neurons in a gymnotid fish. J Comp Physiol 108:193–210Google Scholar
  48. Bastian J (1981a) Electrolocation. I. How the electroreceptors of Apteronotus albifrons code for moving objects and other electrical stimuli. J Comp Physiol 144:465–179Google Scholar
  49. Bastian J (1981b) Electrolocation. II. The effects of moving objects and other electrical stimuli on the activities of two categories of posterior lateral line lobe cells in Apteronotus albifrons. J Comp Physiol 144:481–494Google Scholar
  50. Bastian J (1982) Vision and electroreception: integration of sensory information in the optic tectum of the weakly electric fish Apteronotus albifrons. J Comp Physiol 147:287–297Google Scholar
  51. Bastian J (1986a) Gain control in the electrosensory system mediated by descending inputs to the electrosensory lateral line lobe. J Neurosci 6:553–562PubMedGoogle Scholar
  52. Bastian J (1986b) Gain control in the electrosensory system: a role for the descending projections to the electrosensory lateral line lobe. J Comp Physiol [A] 158:505–515Google Scholar
  53. Bastian, Bratton B (1990) Descending control of electroreception. I. Properties of nucleus praeeminentialis neurons projecting indirectly to the electrosensory lateral line lobe. J Neurosci 10:1226–1240PubMedGoogle Scholar
  54. Bastian J, Courtright J (1991) Morphological correlates of pyramidal cell adaptation rate in the electrosensory lateral line lobe of weakly electric fish. J Comp Physiol [A] 168:393–407Google Scholar
  55. Bastian J, Heiligenberg W (1980a) Neural correlates of the jamming avoidance response in Eigenmannia. J Comp Physiol 136:135–152Google Scholar
  56. Bastian J, Heiligenberg W (1980b) Phase sensitive midbrain neurons in Eigenmannia: neural correlates of the jamming avoidance response. Science 209:828–831PubMedGoogle Scholar
  57. Bastian J, Yuthas J (1984) The jamming avoidance response of Eigenmannia properties of a diencephalic link between sensory processing and motor output. J Comp Physiol [A] 154:895–908Google Scholar
  58. Bastian J, Courtright J, Crawford J (1993) Commissural neurons of the electrosensory lateral line lobe of Apteronotus leptorhynchus: morphological and physiological characteristics. J Comp Physiol [A] 173:257–274Google Scholar
  59. Batten TFC, Cambre ML (1989) Calcitonin gene-related peptide-like immunoreactive fibres innervating the hypothalamic inferior lobes of teleost fishes. Neurosci Lett 98:1–7PubMedGoogle Scholar
  60. Batten TFC, Ingleton PM, Ball JN (1979) Ultrastructural and formaldehyde-fluorescence studies on the hypothalamus of Poecilia latipinna (teleostei, cyprinodontiformes). Gen Comp Endocrinol 39:87–109PubMedGoogle Scholar
  61. Batten TFC, Cambre ML, Moons L, Vandesande F (1990a) Comparative distribution of neuropeptide-immunoreactive systems in the brain of the green molly, Poecilia latipinna. J Comp Neurol 302:893–919PubMedGoogle Scholar
  62. Batten TFC, Moons L, Cambre ML, Vandesande F (1990b) Anatomical distribution of galanin-like immunoreactivity in the brain and pituitary of teleost fishes. Neurosci Lett 111:12–17PubMedGoogle Scholar
  63. Batten TFC, Berry PA, Maqbool A, Moons L, Vandesande F (1993) Immunolocalization of catecholamine enzymes, serotonin, dopamine and L-Dopa in the brain of Dicentrar-chus labrax (Teleostei). Brain Res Bull 31:233–252PubMedGoogle Scholar
  64. Bauchot R, Diagne M, Ridet J-M (1982) The brain of Photoblepharon palpebratus steinitzi (pisces, teleostei, anomalopidae). J Hirnforsch 21:399–404Google Scholar
  65. Bauchot R, Randall JE, Ridet J-M, Bauchot M-L (1989) Encephalization in tropical teleost fishes and comparison with their mode of life. J Hirnforsch 30:645–669PubMedGoogle Scholar
  66. Bäuerle A, Rahmann H (1993) Morphogenetic differentiation of the brain of the Cichlid Fish, Oreochromis mossambicus. J Hirnforsch 3:375–386Google Scholar
  67. Bazer GI, Ebbesson SOE, Reynolds JB, Bailey RP (1987) A cobalt-lysine study of primary olfactory projections in king salmon fry (Oncorhynchus tchawytscka Walbaum). Cell Tissue Res 248:499–503Google Scholar
  68. Behrend K (1977) Processing information carried in a high frequency wave: properties of cerebellar units in a high frequency electric fish. J Comp Physiol 118:357–371Google Scholar
  69. Behrend K (1984) Cerebellar influence on the time structure of movement on the electric fish Eigenmannia. Neuroscience 13:171–178PubMedGoogle Scholar
  70. Behrend K, Donicht M (1990) Descending connections from the brainstem to the spinal cord in the electric fish Eigenmannia. Quantitative description based on retrograde horseradish peroxidase and fluorescent-dye transport. Brain Behav Evol 35:227–239PubMedGoogle Scholar
  71. Behrens UD, Douglas RH, Wagner HJ (1993) Gonadotropinreleasing hormone, a neuropeptide of efferent projections to the teleost retina induces light-adaptive spinule formation on horizontal cell dendrites in dark-adapted preparations kept in vitro. Neurosci Lett 164:59–62PubMedGoogle Scholar
  72. Belenky MA, Polenov AL, Kornienko GG, Konstantinova MS (1985) The hypothalamo-hypophysial syste of the wild carp, Cyprinus carpio L. II. Structure and ultrastructure of the anterior neurohypophysis. Cell Tissue Res 239:211–218Google Scholar
  73. Bell CC (1981a) Central distribution of octavolateral afferents and efferents in a teleost (Mormyridae). J Comp Neurol 195:391–414PubMedGoogle Scholar
  74. Bell CC (1981b) Some central connections of medullary octavolateral centers in a mormyrid fish. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, Berlin Heidelberg New York, pp 383–392Google Scholar
  75. Bell CC (1986) Electroreception in mormyrid fish: central physiology. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 423–452Google Scholar
  76. Bell CC (1989) Sensory coding and corollary discharge effects in mormyrid electric fish. J Exp Biol 6:229–253Google Scholar
  77. Bell CC (1990a) Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. II. Intra-axonal recordings show initial stages of central processing. J Neurophysiol 63:303–318PubMedGoogle Scholar
  78. Bell CC (1990b) Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. III. Physiological differences between two morphological types of fibres. J Neurophysiol 63:319–332PubMedGoogle Scholar
  79. Bell CC (1993) The generation of expectations in the electrosensory lobe of mormyrid fish. J Comp Physiol [A] 173:677–680Google Scholar
  80. Bell CC, Grant K (1989) Corollary discharge inhibition and preservation of temporal information in a sensory nucleus of mormyrid electric fish. J Neurosci 9:1029–1044PubMedGoogle Scholar
  81. Bell CC, Grant K (1992) Sensory processing and corollary discharge effects in mormyromast regions of mormyrid electrosensory lobe. II. Cell types and corollary discharge plasticity. J Neurophysiol 68:859–875PubMedGoogle Scholar
  82. Bell CC, Russell CJ (1978) Termination of electroreceptor and mechanical lateral line afferents in the mormyrid acousticolateral area. J Comp Neurol 182:367–382PubMedGoogle Scholar
  83. Bell CC, Szabo T (1986) Central structures and pathways of the mormyrid electrosensory system. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 375–421Google Scholar
  84. Bell CC, Finger TE, Russell CJ (1981) Central connections of the posterior lateral line lobe in mormyrid fish. Exp Brain Res 42:9–22PubMedGoogle Scholar
  85. Bell CC, Grant K, Serrier J (1992) Sensory processing and corollary discharge effects in the mormyromast response of the mormyrid electrosensory lobe. I. Field potentials, cellular activity in associated structures. J Neurophysiol 68:843–858PubMedGoogle Scholar
  86. Bell CC, Libouban S, Szabo T (1983) Pathways of the electric organ discharge command and its corollary discharges in mormyrid fish. J Comp Neurol 216:327–338PubMedGoogle Scholar
  87. Bell CC, Zakon H, Finger TE (1989) Mormyromast electroreceptor organs and their afferent fibers in mormyrid fish. I. Morphology. J Comp Neurol 286:391–407PubMedGoogle Scholar
  88. Bell CC, Hopkins CD, Grant K (eds) (1993a) Contributions of electrosensory systems to neurobiology and neuroethology. Proceedings of a conference in honor of the scientific career of Thomas Szabo. J Comp Physiol [A] 173:657–763Google Scholar
  89. Bell CC, Caputi A, Grant K, Serrier J (1993b) Storage of a sensory pattern by anti-Hebbian synaptic plasticity in an electric fish. Proc Natl Acad Sci USA 90:4650–4654PubMedGoogle Scholar
  90. Beltramo M, Krieger M, Tillet Y, Thibault J, Calas A, Mazzi Y, Franzoni MF (1994) Immunolocalization of aromatic L-amino acid decarboxylase in goldfish (Carassius auratus) brain. J Comp Neurol 343:209–227PubMedGoogle Scholar
  91. Benedetti I, Mola L (1988) Survey of neuropeptide-like immunoreactivity in supramedullary neurons of Coris julis (L). Brain Res 449:373–376PubMedGoogle Scholar
  92. Benedetti I, Calzolari C, Marini M, Mola L (1988) The spinal cord of Trigla lucerna L. (teleost): preliminary observations on peculiar dorsal neurons. Abstracts from the 18th European Neurosciene Meeting, p 31Google Scholar
  93. Bennett MVL, Pappas GD (1983) The electromotor system of the stargazer: a model for integrative actions at electrotonic synapses. J Neurosci 3:748–761PubMedGoogle Scholar
  94. Bennett MVL, Sandri C (1989) The electromotor system of the electric eel investigated with horseradish peroxidase as a retrograde tracer. Brain Res 488:22–30PubMedGoogle Scholar
  95. Bennett MVL, Nakajima Y, Pappas GD (1967a) Physiology and ultrastructure of electrotonic junctions. I. Supramedullary neurons. J Neurophysiol 30:161–179PubMedGoogle Scholar
  96. Bennett MVL, Pappas GD, Aljure E, Nakajima Y (1967b) Physiology and ultrastructure of electrotonic junctions. II. Spinal and medullary electromotor nuclei in mormyrid fish. J Neurophysiol 30:180–208PubMedGoogle Scholar
  97. Bennett MVL, Nakajima Y, Pappas GD (1967c) Physiology and ultrastructure of electrotonic junctions. III. Giant electromotor neurons of Malapterurus electricus. J Neurophysiol 30:209–235PubMedGoogle Scholar
  98. Bennett MVL, Pappas GD, Giménez M, Nakajima Y (1967d) Physiology and ultrastructure of electrotonic junctions. IV. Medullary electromotor nuclei in gymnotid fish. J Neurophysiol 30:236–300PubMedGoogle Scholar
  99. Bergqvist H (1932) Zur Morphologie des Zwischenhirns bei niedrigen Wirbeltieren. Acta Zool (Stockh) 13:57–303Google Scholar
  100. Berlind A (1973) Caudal neurosecretory system: a physiologist’s view. Am Zool 13:759–770Google Scholar
  101. Bern HA, Takasugi N (1962) The caudal neurosecretory system of fishes. Gen Comp Endocrinol 2:96–110PubMedGoogle Scholar
  102. Bernhardt R (1989) Axonal pathfinding during the regeneration of the goldfish optic pathway. J Comp Neurol 284:119–134PubMedGoogle Scholar
  103. Bernhardt R, Easter SS Jr (1986) Maps of retinal position onto the cross section of the optic pathway of goldfish. J Comp Neurol 254:493–510PubMedGoogle Scholar
  104. Bernhardt R, Chitnis AB, Lindamer L, Kuwada JY (1990) Identification of spinal neurons in the embryonic and larval zebrafish. J Comp Neurol 302:603–616PubMedGoogle Scholar
  105. Bernhardt R, Nguyen N, Kuwada JY (1992a) Growth cone guidance by floor plate cells in the spinal cord of zebrafish embryos. Neuron 8:869–882PubMedGoogle Scholar
  106. Bernhardt R, Patel CK, Wilson SW, Kuwada JY (1992b) Axonal trajectories and distribution of GABAergic spinal neurons in wildtype and mutant zebrafish lacking floor plate cells. J Comp Neurol 326:263–272PubMedGoogle Scholar
  107. Bernocchi G, Biggiogena M, Barni S (1987) Comparative aspects of cerebellar architecture in the European eel life cycle. J Morphol 191:25–36Google Scholar
  108. Bleckmann H, Zelick R (1993) The responses of peripheral and central mechanosensory lateral line units of weakly electric fish to moving objects. J Comp Physiol [A] 172:115–128Google Scholar
  109. Bleckmann H, Niemann U, Fritzsch B (1991) Peripheral and central aspects of the acoustic and lateral line system of a bottom dwelling catfish Ancistrus sp. J Comp Neurol 314:452–466PubMedGoogle Scholar
  110. Bodega G, Suárez I, Rubio M, Villalba RM, Fernández B (1993) Astroglial pattern in the spinal cord of the adult barbel (Barbus comiza). Anat Embryol (Berl) 187:385–395Google Scholar
  111. Bodian D (1937) The structure of the vertebrate synapse. A study of the axon endings on Mauthner’s cell and neighboring centers in the goldfish. J Comp Neurol 48:117–159Google Scholar
  112. Bolliet V, Ali MA (1992) Immunohistochemical study of the development of serotoninergic neurons in the brain of the brook trout Salvelinus fontinalis. Brain Behav Evol 40:234–249PubMedGoogle Scholar
  113. Bonn U (1990) NPY-like immunoreactivity in the brain of the teleost Tinca tinca (Cyprinidae). J Hirnforsch 3:323–330Google Scholar
  114. Bonn U, König B (1988) FMRF amide-like immunoreactivity in the brain and pituitary of Xenotica eisenii (Cyprinidontiformes, Teleostei). J Hirnforsch 29:121–131PubMedGoogle Scholar
  115. Bonn U, König B (1989a) Distribution of somatostatin (SRIF) in the brain and pituitary of Eigenmannia lineata (Gymnotiformes, Teleostei). An immunohistochemical study. J Hirnforsch 30:203–212PubMedGoogle Scholar
  116. Bonn U, König B (1989b) FMRF amide immunoreactivity in the brain and pituitary of Carassius auratus (Cyprinidae, Teleostei). J Hirnforsch 30:361–370PubMedGoogle Scholar
  117. Bonn U, König B (1990) Serotonin-immunoreactive neurons in the brain of Eigenmannia lineata (Gymnotiformes, Teleostei). J Hirnforsch 31:297–306PubMedGoogle Scholar
  118. Bonn U, Kramer B (1987) Distribution of monoaminecontaining neurons in the brain of the weakly electric teleost, Eigenmannia lineata (Gymnotiformes, Teleostei). Z Mikrosk Anat Forsch (Lpz) 101:339–362Google Scholar
  119. Borg B, Goos HJT, Terlou M (1982) LHRH-immunoreactive cells in the brain of the three-spined stickleback, Gasterosteus aculeatus L. (Gasterosteidae). Cell Tissue Res 226:695–699PubMedGoogle Scholar
  120. Bosch TJ, Paul DH (1993) Differential responses of single reticulospinal cells to spatially localized stimulation of the optic tectum in a teleost fish, Salmo trutta. Eur J Neurosci 5:742–450PubMedGoogle Scholar
  121. Boyle R, Carey JP, Highstein SM (1991) Morphological correlates of response dynamics and efferent stimulation in horizontal semicircular canal afferents of the toadfish, Opsanus tau. J Neurophysiol 66:1504–1521PubMedGoogle Scholar
  122. Braford MR Jr (1982) African, but not Asian, notopterid fishes are electroreceptive. Evidence from brain characters. Neurosci Lett 32:35–39PubMedGoogle Scholar
  123. Braford MR Jr (1986a) De Gustibus non est disputandum: a spiral center for taste in the brain of the teleost fish, Heterotis niloticus. Science 232:489–491PubMedGoogle Scholar
  124. Braford MR Jr (1986b) African knife fishes: the Xenomystines. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 453–464Google Scholar
  125. Braford MR Jr, Northcutt RG (1983) Organization of the diencephalon and pretectum of the ray-finned fishes. In: Davis RE, Northcutt RG (eds) Fish neurobiology. 2. Higher brain areas and functions. University of Michigan Press, Ann Arbor, pp 117–163Google Scholar
  126. Brandstätter R, Kotrschal K (1990) Brain growth patterns in four European cyprinid fish species (Cyprinidae, Teleostei): Roach (Rutilus rutilus), Bream (Abramis brama), Common carp (Cyprinus carpio) and Sabre Carp (Pelecus cultratus). Brain Behav Evol 35:195–211PubMedGoogle Scholar
  127. Brantley RK, Bass AH (1988) Cholinergic neurons in the brain of a teleost fish (Porichthys notatus) located with a monoclonal antibody to choline acetyltransferase. J Comp Neurol 275:87–205PubMedGoogle Scholar
  128. Bratton B, Bastian J (1990) Descending control of electroreception. II. Properties of nucleus praeeminentialis neurons projecting directly to the electrosensory lateral line lobe. J Neurosci 10:1241–1253PubMedGoogle Scholar
  129. Braun N, Schikorski T, Zimmermann H (1993) Cytoplasmic segregation and cytoskeletal organization in the electric catfish giant electromotoneuron with special reference to the axon hillock region. Neuroscience 52:745–756PubMedGoogle Scholar
  130. Brickner RM (1929) A description and interpretation of certain parts of the teleostean midbrain and thalamus. J Comp Neurol 47:225–282Google Scholar
  131. Brochu G, Maler L, Hawkes R (1990) Zebrin II: a polypeptide antigen expressed selectively by Purkinje cells reveals compartments in rat and fish cerebellum. J Comp Neurol 291:538–552PubMedGoogle Scholar
  132. Bullock TH, Heiligenberg W (eds) (1986) Electroreception. Wiley, New YorkGoogle Scholar
  133. Bullock TH, Northcutt RG (1982) A new electroreceptive teleost: Xenomystus nigri (Osteoglossiformes, Notopteridae). J Comp Physiol 148:345–352Google Scholar
  134. Bullock TH, Northcutt RG, Bodznick DA (1982) Evolution of electroreception. Trends Neurosci 5:50–53Google Scholar
  135. Bullock TH, Bodznick DA, Northcutt RG (1983) The phylogenetic distribution of electroreception: evidence for convergent evolution of a primitive vertebrate sense modality. Brain Res Rev 6:2–46Google Scholar
  136. Bullock TH, Hofmann MH, Nahm FK, New JG, Prechtl JC (1990) Event-related potentials in the retina and optic tecturn of fish. J Neurophysiol 64:903–914PubMedGoogle Scholar
  137. Bunt SM (1982) Retinotopic and temporal organization of the optic nerve and tracts in the adult goldfish. J Comp Neurol 206:209–226PubMedGoogle Scholar
  138. Burgess JW, Coss RG (1980) Crowded jewel fish show changes in dendritic spine density and spine morphology. Neurosci Lett 17:277–281PubMedGoogle Scholar
  139. Burgess JW, Coss RG (1983) Rapid effect of biologically relevant stimulation on tectal neurons: changes in dendritic spine morphology after nine minutes are retained for twenty-four hours. Brain Res 266:217–223PubMedGoogle Scholar
  140. Busse U, Stuermer CAO (1989) Evidence for the stability of positional markers in the goldfish tectum. J Comp Neurol 288:538–554PubMedGoogle Scholar
  141. Butler AB (1992) Variation in tectal morphology in teleost fishes. Brain Behav Evol 40:256–272PubMedGoogle Scholar
  142. Butler AB (1994) The evolution of the dorsal thalamus of jawed vertebrates, including mammals: cladistic analysis and a new hypothesis. Brain Res Rev 19:29–65PubMedGoogle Scholar
  143. Butler AB, Northcutt RG (1992) Retinal projections in the bowfin, Amia calva: cytoarchitectonic and experimental analysis. Brain Behav Evol 39:169–194PubMedGoogle Scholar
  144. Butler AB, Northcutt RG (1993) The diencephalon of the pacific herring, Clupea harengus: cytoarchitectonic analysis. J Comp Neurol 328:527–546PubMedGoogle Scholar
  145. Butler AB, Saidel WM (1991) Retinal projections in the freshwater butterfly fish, Pantodon buchholzi (Osteoglossoidei). I. Cytoarchitectonic analyses and primary visual pathways. Brain Behav Evol 38:127–153PubMedGoogle Scholar
  146. Butler AB, Saidel WM (1992) Tectal projection to an unusual nucleus in the diencephalon of a teleost fish, Pantodon buchholzi. Neurosci Lett 145:193–196PubMedGoogle Scholar
  147. Butler AB, Wullimann MF, Northcutt RG (1991) Comparative cytoarchitectonic analysis of some visual pretectal nuclei in teleosts. Brain Behav Evol 38:92–114PubMedGoogle Scholar
  148. Cabrera B, Torres B, Pásaro R, Pastor AM, Delgado-García JM (1991) A morphological study of abducens nucleus motoneurons and internuclear neurons in the goldfish (Carassius auratus). Brain Res Bull 28:137–144Google Scholar
  149. Caird DM (1978) A simple cerebellar system: the lateral line lobe of the goldfish. J Comp Physiol 127:61–74Google Scholar
  150. Campbell CBG, Ebbesson SOE (1969) The optic system of a teleost: Holocentrus re-examined. Brain Behav Evol 2:415–430Google Scholar
  151. Canfield JG, Rose GJ (1993) Electrosensory modulation of escape responses. J Comp Physiol [A] 173:463–474Google Scholar
  152. Caprio J, Brand JG, Teeter JH, Valentincic T, Kalinoski DL, Kohbara J, Kumazawa T, Wegert S (1993) The taste system of the channel catfish: from biophysics to behavior. Trends Neurosci 16:192–197PubMedGoogle Scholar
  153. Carr CE, Maler L (1985) A Golgi study of the cell types of the dorsal torus semicircularis of the electric fish Eigenmannia: functional and morphological diversity in the midbrain. J Comp Neurol 235:207–240PubMedGoogle Scholar
  154. Carr CE, Maler L (1986) Electroreception in gymnotiform fish. Central anatomy and physiology. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 319–374Google Scholar
  155. Carr CE, Maler L, Heiligenberg W, Sas E (1981) Laminar organization of the afferent and efferent systems of the torus semicircularis of gymnotiform fish: morphological substrates for parallel processing in the electrosensory system. J Comp Neurol 203:649–670PubMedGoogle Scholar
  156. Carr CE, Maler L, Sas E (1982) Peripheral organization and central projections of the electrosensory nerves in gymnotiform fish. J Comp Neurol 211:139–153PubMedGoogle Scholar
  157. Carr CE, Heiligenberg W, Rose GJ (1986a) A timecomparison circuit in the electric fish midbrain. I. Behavior and physiology. J Neurosci 6:107–119PubMedGoogle Scholar
  158. Carr CE, Maler L, Taylor B (1986b) A time-comparison circuit in the electric fish midbrain. II. Functional morphology. J Neurosci 6:1372–1383PubMedGoogle Scholar
  159. Caruncho HJ, Rodriguez-Moldes I, Anadón R (1990a) A freeze-fracture study of the soma membranes of monoaminergic neurons in the hypothal. N rec post of the rainbow trout (Salmo gairdneri Rich.). J Hirnforsch 31:575–584PubMedGoogle Scholar
  160. Caruncho HJ, Rodriguez-Moldes I, Lanas J, Anadón R (1990b) Freeze-fracture study of synaptic contacts in the neuropil of the tuberal hypothalamus of the rainbow trout (Salmo gairdneri Rich.). J Hirnforsch 31:689–696PubMedGoogle Scholar
  161. Celio MR, Gray EG, Yasargil GM (1979) Ultrastructure of the Mauthner axon collateral and its synapses in the goldfish spinal cord. J Neurocytol 8:19–29PubMedGoogle Scholar
  162. Cepriano LM, Schreibman MP (1993) The distribution of neuropeptide Y and dynorphin immunoreactivity in the brain and pituitary gland of the platyfish, Xiphophorus maculatus, from birth to sexual maturity. Cell Tissue Res 271:87–92PubMedGoogle Scholar
  163. Chan DKO, Bern HA (1976) The caudal neurosecretory system. A critical evaluation of the two-hormone hypothesis. Cell Tissue Res 174:339–354PubMedGoogle Scholar
  164. Chang YT, Liu JW, Faber DS (1987) Spinal inputs to the ventral dendrite of the teleost Mauthner cell. Brain Res 417:205–213PubMedGoogle Scholar
  165. Choms A, Probst W, Rahmann H (1981) Ultrastrukturelle Unterschiede in der Morphologie des Tectum opticum von Karpfen (Cyprinus carpio) und Forelle (Salmo gairdneri) unter besondere Berücksichtigung der Synapsen. J Hirnforsch 22:299–306PubMedGoogle Scholar
  166. Claas B, Münz H (1980) Bony fish lateral line efferent neurons identified by retrograde axonal transport of horseradish peroxidase (HRP). Brain Res 193:249–253PubMedGoogle Scholar
  167. Claas B, Münz H (1981) Projections of lateral line afferents in a teleost’s brain. Neurosci Lett 23:287–290PubMedGoogle Scholar
  168. Claas B, Fritzsch B, Münz H (1981) Common efferents to lateral line and labyrinthine hair cells in aquatic vertebrates. Neurosci Lett 27:231–235PubMedGoogle Scholar
  169. Cohen SL, Kriebel RM (1989a) Terminal processes of serotonin neurons in the caudal spinal cord of the molly, Poecilia latipinna, project to the leptomeninges and urophysis. Cell Tissue Res 255:619–625PubMedGoogle Scholar
  170. Cohen SL, Kriebel RM (1989b) Brainstem location of serotonin neurons projecting to the caudal neurosecretory complex. Brain Res Bull 22:481–487PubMedGoogle Scholar
  171. Cohen SL, Miller KE, Kriebel RM (1990) Distribution of serotonin in the caudal neurosecretory complex. A light and electron microscopic study. Anat Embryol (Berl) 181:491–498Google Scholar
  172. Collin SP (1989) Anterograde labelling from the optic nerve reveals multiple central targets in the teleost, Lethrius chrysostomus (Paxiformes). Cell Tissue Res 256:327–335PubMedGoogle Scholar
  173. Collin SP, Collin HB (1988) Topographic analysis of the retinal ganglion cell layer and optic nerve in the sandlance Limnichthyes fasciatus (Creeiidae, Perciformes). J Comp Neurol 278:226–241PubMedGoogle Scholar
  174. Contestabile A, Villani L, Ciani F (1977) Ultrastructural analysis on acetylcholinesterase localization in the cerebellar cortex. Anat Embryol (Berl) 152:15–27Google Scholar
  175. Contestabile A, Villani L, Bissoli R, Poli A, Migani P (1986) Cholinergic, GABAergic and excitatory amino acidic neurotransmission in the goldfish vagal lobe. Exp Brain Res 63:301–309PubMedGoogle Scholar
  176. Cook JE, Rankin ECC, Stevens HP (1983) A pattern of optic axons in the normal goldfish tectum consistent with the caudal migration of optic terminals during development. Exp Brain Res 52:147–151PubMedGoogle Scholar
  177. Coombs S, Görner P, Münz H (eds) (1989) The mechanosensory lateral line. Neurobiology and evolution. Springer, Berlin Heidelberg New YorkGoogle Scholar
  178. Corio M, Peute J, Steinbusch HWM (1991) Distribution of serotonin-and dopamine-immunoreactivity in the brain of the teleost Clarias gariepinus. J Chem Neuroanat 4:79–95PubMedGoogle Scholar
  179. Cornbrooks EB, Parsons RL (1991a) Sexually dimorphic distribution of a galanin-like peptide in the central nervous system of the teleost fish Poecilia latipinna. J Comp Neurol 304:639–657PubMedGoogle Scholar
  180. Cornbrooks EB, Parsons RL (1991b) Source of sexually dimorphic galanin-like immunoreactive projections in the teleost fish Poecilia latipinna. J Comp Neurol 304:658–665PubMedGoogle Scholar
  181. Corujo A, Anadón R (1990) The development of the diencephalon of the Rainbow trout (Salmo gairdneri Richardson). Thalamus and hypothalamus. J Hirnforsch 31:669–680PubMedGoogle Scholar
  182. Coss RG, Globus A (1978) Spine systems on tectal interneurons in jewel fish are shortened by social stimulation. Science 200:787–790PubMedGoogle Scholar
  183. Coss RG, Globus A (1979) Social experience affects the development of dendritic spines and branches on tectal interneurons in the jewel fish. Dev Psychobiol 12:347–358PubMedGoogle Scholar
  184. Crapon de Caprona MD, Fritzsch B (1983) The development of the retinopetal nucleus olfacto-retinalis of two cichlid fish as revealed by horseradish peroxidase. Dev Brain Res 11:281–301Google Scholar
  185. Crawford JD (1993) Central auditory neurophysiology of a sound-producing fish: the mesencephalon of Pollimyrus isidori (Mormyridae). J Comp Physiol [A] 172:139–152Google Scholar
  186. Crispino L (1983) Modification of responses from specific sensory systems in midbrain by cerebellar stimulation: experiments on a teleost fish. J Neurophysiol 19:3–15Google Scholar
  187. Cuadrado MI (1987) The cytoarchitecture of the torus semicircularis in the teleost Barbus meridionalis. J Morphol 191:233–245Google Scholar
  188. Cuadrado MI (1989) A quantitative study of the torus semicircularis of Barbus meridionalis. J Hirnforsch 30:371–374PubMedGoogle Scholar
  189. Cuadrado MI, Coveñas R, Tramu G (1992a) Neuropeptides in the torus semicircularis of the carp (Cyprinus carpio). Brain Res Bull 28:593–598PubMedGoogle Scholar
  190. Cuadrado MI, Coveñas R, Tramu G (1992b) Neuropeptides and monoamines in the torus semicircularis of the carp (Cyprinus carpio). Brain Res Bull 29:529–539PubMedGoogle Scholar
  191. Cumming R, Reaves TA, Hayward JN (1981) Ultrastructural immunocytochemical localization of enkephalin in the goldfish preoptic nucleus. Neurosci Lett 27:313–318PubMedGoogle Scholar
  192. Danielson PD, Zottoli SJ, Corrodi JG, Rhodes KJ, Mufson EJ (1988) Localization of choline acetyltransferase to somata of posterior lateral line efferents in the goldfish. Brain Res 448:158–161PubMedGoogle Scholar
  193. Davis MR, Fernald RD (1990) Social control of neuronal soma size. J Neurobiol 21:1180–1188PubMedGoogle Scholar
  194. Davis RE, Kassel J (1983) Behavioral functions of the teleostean telencephalon. In: Davis RE, Northcutt RG (eds) Fish neurobiology. 2. Higher brain areas and functions. University of Michigan Press, Ann Arbor, pp 237–263Google Scholar
  195. Davis RE, Kyle A, Klinger PD (1988) Nervus terminals innervation of the goldfish retina and behavioral visual sensitivity. Neurosci Lett 91:126–130PubMedGoogle Scholar
  196. Davis RE, Wilmot GR, Cha J-HJ (1992) Glutamic acidinsensitive [3H]kainic acid binding in goldfish brain. Brain Res 571:73–78PubMedGoogle Scholar
  197. De Graaf F, van Raamsdonk W, van Asselt E, Diegenbach PC (1990) Identification of motoneurons in the spinal cord of the zebrafish (Brachydanio rerio), with special reference to motoneurons that innervate intermediate muscle fibers. Anat Embryol (Berl) 182:93–102Google Scholar
  198. De Graaf P (1989) Control of respiration in the carp (Cyprinus carpio L). Mechanoreceptor input and respiratory rhythm. Thesis, University of Groningen, NetherlandsGoogle Scholar
  199. Demski LS (1992) Chromatophore systems in teleosts and cephalopods: a levels oriented analysis of convergent systems. Brain Behav Evol 40:141–156PubMedGoogle Scholar
  200. Demski LS, Knigge KM (1971) The telencephalon and hypothalamus of the bluegill Lepomis macrochirus: evoked feeding aggressive and reproductive behavior with representative frontal sections. J Comp Neurol 143:1–16PubMedGoogle Scholar
  201. Demski LS, Northcutt RG (1983) The terminal nerve: a new chemosensory system in vertebrates. Science 220:435–437PubMedGoogle Scholar
  202. Demski LS, Sloan HE (1985) A direct magnocellular-preopticospinal pathway in goldfish: implications for control of sex behavior. Neurosci Lett 55:283–288PubMedGoogle Scholar
  203. Demski LS, Evan AP, Saland LC (1975) The structure of the inferior lobe of the teleost hypothalamus. J Comp Neurol 161:483–498PubMedGoogle Scholar
  204. Denizot JP, Libouban S, Szabo T (1983) Anatomical study and HRP identification of electromotoneurons and motoneurons in the spinal cord of Gymnarchus niloticus. Exp Brain Res 53:99–108PubMedGoogle Scholar
  205. Denizot JP, Clausse S, Elekes K, Geffard M, Grant K, Libouban S, Ravaille-Veron M, Szabo T (1987) Convergence of electrotonic club endings, GABA-and serotoninergic terminals on second order neurons of the electrosensory pathway in mormyrid fish, Gnathonemus petersii and Brienomyrus niger (teleostei). Cell Tissue Res 249:301–309PubMedGoogle Scholar
  206. De Rosa F, Fine ML (1988) Primary connections of the anterior and posterior lateral line nerves in the oyster toadfish. Brain Behav Evol 31:312–317PubMedGoogle Scholar
  207. De Waegh S, Maslam S, Roberts BL (1985) Cells of origin of pathways descending to the spinal cord. J Physiol (Lond) 366:978Google Scholar
  208. De Wolf FA, Schellart NAM, Hoogland PV (1983) Octavolateral projections to the torus semicircularis of the trout, Salmo gairdneri. Neurosci Lett 38:209–213PubMedGoogle Scholar
  209. Díaz SM, Anadón R (1989) Central projections of the lateral line nerves of Chelon labrosus (Teleosts, order Perciformes). J Hirnforsch 30:339–347PubMedGoogle Scholar
  210. Díaz-Regueira S, Anadón R (1990) Primary nerve projections and primary nuclei of the octaval nerve in the teleost Chelon labrosus. An HRP study. J Hirnforsch 31:705–714PubMedGoogle Scholar
  211. Díaz-Regueira S, Anadón R (1992) Central projections of the vagus nerve in Chelon labrosus Risso (Teleostei, O. Perciformes). Brain Behav Evol 40:297–310PubMedGoogle Scholar
  212. DiDomenico R, Nissanov J, Eaton RC (1988) Lateralization and adaption of a continuously variable behavior following lesions of a reticulospinal command neuron. Brain Res 473:15–28PubMedGoogle Scholar
  213. Diez C, Lara J, Alonso JR, Miguel JJ, Aijon J (1987) Microscopic structure of the brain of Barbus meridionalis Risso. I. Telencephalon. J Hirnforsch 28:255–269PubMedGoogle Scholar
  214. Donald JA, Evans DH (1992) Immunohistochemical localisation of natriuretic peptides in the heart and brain of the gulf toadfish Opsanus beta. Cell Tissue Res 269:151–158PubMedGoogle Scholar
  215. Douglas RH, Djamgoz MBA (eds) (1990) The visual system of fish. Chapman and Hall, LondonGoogle Scholar
  216. Dulka JG (1993) Sex pheromone systems in goldfish: comparisons to vomeronasal systems in tetrapods. Brain Behav Evol 42:265–280PubMedGoogle Scholar
  217. Dunn-Meynell AA, Sharma SC (1984) Changes in the topographically organized connections between the nucleus isthmi and the optic tectum after partial tectal ablation in adult goldfish. J Comp Neurol 227:497–510PubMedGoogle Scholar
  218. Dunn-Meynell AA, Sharma SC (1986) The visual system of the channel catfish (Ictalurus punctatus). I. Retinal ganglion cell morphology. J Comp Neurol 247:32–55PubMedGoogle Scholar
  219. Dunn-Meynell AA, Sharma SC (1988) Visual system of the channel catfish ictalurus-punctatus III. Fiber order in the optic nerve and optic tract. J Comp Neurol 268:299–312PubMedGoogle Scholar
  220. Dunn-Meynell AA, Prasada Rao PD, Sharma SC (1983) The ipsilateral retinotectal projection in normal and albino channel catfish. Neurosci Lett 36:25–31PubMedGoogle Scholar
  221. Dye J (1987) Dynamics and stimulus-dependence of pacemaker control during behavioral modulations in the weakly electric fish, Apteronotus. J Comp Physiol [A] 161:175–185Google Scholar
  222. Dye J (1988) An in vitro physiological preparation of a vertebrate communicatory behavior: chirping in the weakly electric fish: Apteronotus. J Comp Physiol [A] 163:445–458Google Scholar
  223. Dye J (1991) Ionic and synaptic mechanisms underlying a brainstem oscillator: an in vitro study of the pacemaker nucleus of Apteronotus. J Comp Physiol [A] 168:521–532Google Scholar
  224. Dye J, Heiligenberg W (1987) Intracellular recording in the medullary pacemaker nucleus of the weakly electric fish, Apteronotus, during modulatory behavior. J Comp Physiol [A] 161:187–200Google Scholar
  225. Dye JC, Meyer JH (1986) Central control of the electric organ discharge in weakly electric fish. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 71–102Google Scholar
  226. Easter SS, Stuermer CAO (1984) An evaluation of the hypothesis of shifting terminals in goldfish optic tectum. J Neurosci 4:1052–1063PubMedGoogle Scholar
  227. Easter SS, Bratton B, Scherer SS (1984) Growth related order of the retinal fiber layer in goldfish. J Neurosci 8:2173–2190Google Scholar
  228. Eaton RC, Bombardieri RA, Meyer DL (1977) The Mauthnerinitiated startle response in teleost fish. J Exp Biol 66:65–81PubMedGoogle Scholar
  229. Eaton RC, DiDomenico R, Nissanov J (1991) Role of the Mauthner cell in sensorimotor integration by the brain stem escape network. Brain Behav Evol 37:272–285PubMedGoogle Scholar
  230. Ebbesson SOE (1980) A visual thalamo-telencephalic pathway in a teleost fish (Holocentrus rufus). Cell Tissue Res 213:505–508PubMedGoogle Scholar
  231. Ebbesson SOE, Meyer DL (1981) Efferents to the retina have multiple sources in teleost fish. Science 214:924–926PubMedGoogle Scholar
  232. Ebbesson SOE, Meyer DL (1989) Retinopetal cells exist in the optic tectum of steelhead trout. Neurosci Lett 106:95–98PubMedGoogle Scholar
  233. Ebbesson SOE, Vanegas H (1976) Projections of the optic tectum in two teleost species. J Comp Neurol 165:161–180PubMedGoogle Scholar
  234. Ebbesson SOE, Meyer DL, Scheich H (1981) Connections of the olfactory bulb in the piranha (Serrasalmus nattereri). Cell Tissue Res 216:167–180PubMedGoogle Scholar
  235. Echteier SM (1984) Connections of the auditory midbrain in a teleost fish, Cyprinus carpio. J Comp Neurol 230:536–551Google Scholar
  236. Echteier SM (1985a) Organization of central auditory pathways in a teleost fish, Cyprinus carpio. J Comp Physiol [A] 156:267–280Google Scholar
  237. Echteler SM (1985b) Tonotopic organization in the midbrain of a teleost fish. Brain Res 338:387–391PubMedGoogle Scholar
  238. Echteler SM, Saidel WM (1981) Forebrain connections in the goldfish support telencephalic homologies with land vertebrates. Science 212:683–685PubMedGoogle Scholar
  239. Eisen JS (1991) Determination of primary motoneuron identity in deelping zebrafish embryos. Science 252:569–571PubMedGoogle Scholar
  240. Eisen JS, Myers PZ, Westerfield M (1986) Pathway selection by growth cones of identified motoneurones in live zebra fish embryos. Nature 320:269–271PubMedGoogle Scholar
  241. Eisen JS, Pike SH, Romancier B (1990) An identified motoneuron with variable fates in embryonic zebrafish. J Neurosci 10:34–43PubMedGoogle Scholar
  242. Ekström P (1982) Retinofugal projections in the eel (Anguilla anguilla L., Teleostei), visualized by the cobalt-filling technique. Cell Tissue Res 225:507–524PubMedGoogle Scholar
  243. Ekström P (1984) Central neural connections of the pineal organ and retina in the teleost Gasterosteus aculeatus L. J Comp Neurol 226:321–335PubMedGoogle Scholar
  244. Ekström P (1987a) Distribution of choline acetyltransferase immunoreactive neurons in the brain of a cyprinid teleost (Phoxinus phoxinus L.). J Comp Neurol 256:494–516PubMedGoogle Scholar
  245. Ekström P (1987b) Photoreceptors and CSF contacting neurons in the pineal organ of a teleost fish have direct axonal connections with the brain: an HRP study. J Neurosci 7:987–995PubMedGoogle Scholar
  246. Ekström P, Ebbesson SOE (1988) The left habenular nucleus contains a discrete serotonin-immunoreactive subnucleus in the coho salmon (Oncorhynchus kisutch). Neurosci Lett 91:121–125PubMedGoogle Scholar
  247. Ekström P, Ebbesson SOE (1989) Distribution of serotoninimmunoreactive neurons in the brain of sockey salmon fry. J Chem Neuroanat 2:201–213PubMedGoogle Scholar
  248. Ekström P, Korf H-W (1985) Pineal neurons projecting to the brain of the rainbow trout, Salmo gairdneri Richardson (Teleostei). In vitro retrograde filling with horseradish peroxidase. Cell Tissue Res 240:693–700Google Scholar
  249. Ekström P, Korf H-W (1986a) Putative cholinergic elements in the photosensory pineal organ and retina of a teleost, Phoxinus phoxinus L. (Cyprinidae). Distribution of choline acetyltransferase immunoreactivity, acetylcholinesterasepositive elements, and pinealofugally projecting neurons. Cell Tissue Res 246:321–329PubMedGoogle Scholar
  250. Ekström P, Korf H-W (1986b) Substance P-like immunoreactive neurons in the photosensory pineal organ of the rainbow trout, Salmo gairdneri Richardson (Teleostei). Cell Tissue Res 246:359–364PubMedGoogle Scholar
  251. Ekström P, van Veen T (1983) Central connections of the pineal organ in the three-spined stickleback, Gasterosteus aculeatus L. (Teleostei). Cell Tissue Res 232:141–155PubMedGoogle Scholar
  252. Ekström P, van Veen T (1984) Distribution of 5-hydroxytryptamine (serotonin) in the brain of the teleost Gasterosteus aculeatus L. J Comp Neurol 226:307–320PubMedGoogle Scholar
  253. Ekström P, Nyberg L, van Veen T (1985) Ontogenetic development of serotoninergic neurons in the brain of a teleost, the three-spined stickleback. An immunohistochemical analysis. Dev Brain Res 17:209–224Google Scholar
  254. Ekström P, Reschke M, Steinbusch HWM, Veen T (1986) Distribution of noradrenaline in the brain of the teleost Gasterosteus aculeatus L.: an immunohistochemical analysis. J Comp Neurol 254:297–313PubMedGoogle Scholar
  255. Ekström P, Foster RG, Korf H-W, Schalken JJ (1987) Antibodies against photoreceptor-specific proteins reveal axonal projections from the photosensory pineal organ in teleosts. J Comp Neurol 265:25–33PubMedGoogle Scholar
  256. Ekström P, Honkanen T, Ebbesson SOE (1988) FMRFamidelike immunoreactive neurons of the nervus terminalis of teleosts innervate both retina and pineal organ. Brain Res 460:68–75PubMedGoogle Scholar
  257. Ekström P, Honkanen T, Steinbusch HWM (1990) Distribution of dopamine-immunoreactive neuronal perikarya and fibers in the brain of a teleost, G. aculeatus. Comparison with TH-and DBH-IR neurons. J Chem Neuroanat 3:233–260PubMedGoogle Scholar
  258. Ekström P, Honkanen T, Borg B (1992) Development of tyrosine hydroxylase-, dopamine-and dopamine β-hydroxylase-immunoreactive neurons in a teleost, the three-spined stickleback. J Chem Neuroanat 5:481–501PubMedGoogle Scholar
  259. Ekström P, Honkanen T, Borg B (1994) Development if central catecholaminerigic neurons in teleosts. In: Smeets WJAJ, Reiner A (eds) Phylogeny and development of catecholamine systems in the CNS of vertebrates. Cambridge University Press, Cambridge, pp 325–342Google Scholar
  260. Elekes K, Szabo T (1981) Synaptology of the command (pacemaker) nucleus in the brain of the weakly electric fish, Sternarchus (Apteronotus) albifrons. Neuroscience 6:443–460PubMedGoogle Scholar
  261. Elekes K, Szabo T (1982) Synaptic organization in the pacemaker nucleus of a medium frequency-weakly electric fish, Eigenmannia sp. Brain Res 237:267–281PubMedGoogle Scholar
  262. Elekes K, Szabo T (1985a) Synaptology of the medullary command (pacemaker) nucleus of the weakly electric fish (Apteronotus leptorhynchus) with particular reference to comparative aspects. Exp Brain Res 60:509–520PubMedGoogle Scholar
  263. Elekes K, Szabo T (1985b) The mormyrid brainstem-III. Ultrastructure and synaptic organization of the medullary ‘pacemaker’ nucleus. Neuroscience 15:431–443PubMedGoogle Scholar
  264. Elekes K, Ravaille M, Bell CC, Libouban S, Szabo T (1985) The mormyrid brainstem. II. The medullary electromotor relay nucleus: an ultrastructural horseradish peroxidase study. Neuroscience 15:417–429PubMedGoogle Scholar
  265. Ellis DB, Szabo T (1980) Identification of different cell types in the command (pacemaker) nucleus of several gymnoti-form species by retrograde transport of horseradish peroxidase. Neuroscience 5:1917–1929PubMedGoogle Scholar
  266. Enger PS, Libouban S, Szabo T (1976a) Fast conducting electrosensory pathway in the mormyrid fish, Gnathonemus petersii. Neurosci Lett 2:133–136PubMedGoogle Scholar
  267. Enger PS, Libouban S, Szabo T (1976b) Rhombomesencephalic connections in the fast conducting electrosensory system of the mormyrid fish, Gnathonemus petersii. An HRP study. Neurosci Lett 3:239–243PubMedGoogle Scholar
  268. Erdö SL, Meyer DL, Malz CR, Hormann MH, Ebbesson SOE (1992) Changes in ligand binding to GABA, receptor sites in pacific salmon (Oncorhynchus) brain during spawning migration and ‘aging’. J Hirnforsch 33:467–469PubMedGoogle Scholar
  269. Evan AP, Demski LS, Saland LC (1976) The lateral recess of the third ventricle in teleosts: an electron microscopic and Golgi study. Cell Tissue Res 166:521–530PubMedGoogle Scholar
  270. Faber DS, Korn H, Lin J-W (1991) Role of medullary networks and postsynaptic membrane properties in regulating Mauthner cell responsiveness to sensory excitation. Brain Behav Evol 37:286–297PubMedGoogle Scholar
  271. Fasolo A, Mazzi V, Franzoni MF (1978) A Golgi study of the hypothalamus of Actinopterygii. II. The posterior hypothalamus. Cell Tissue Res 191:433–447PubMedGoogle Scholar
  272. Fay RR, Hillery CM, Bolan K (1982) Representation of sound pressure and particle motion information in the midbrain of the goldfish. Comp Biochem Physiol 71A:181–191Google Scholar
  273. Fernald RD (1982) Retinal projections in the African cichlid fish, Haplochromis burtoni. J Comp Neurol 206:379–389PubMedGoogle Scholar
  274. Fernald RD, Shelton LC (1985) The organization of the diencephalon and the pretectum in the fish Haplochromis burtoni. J Comp Neurol 238:202–217PubMedGoogle Scholar
  275. Fetcho JR (1986) The organization of the motoneurons innervating the axial musculature of vertebrates. I. Goldfish (Carassius auratus) and mudpuppies (Necturus maculosus). J Comp Neurol 249:521–550PubMedGoogle Scholar
  276. Fetcho JR (1991) Spinal network of the Mauthner cell. Brain Behav Evol 37:298–316PubMedGoogle Scholar
  277. Fetcho JR (1992a) Excitation of motoneurons by the Mauthner axon in goldfish: complexities in a’ simple’ reticulospinal pathway. J Neurophysiol 67:1574–1586PubMedGoogle Scholar
  278. Fetcho JR (1992b) The spinal motor system in early vertebrates and some of its evolutionary changes. Brain Behav Evol 40:82–97PubMedGoogle Scholar
  279. Fetcho JR, Faber DS (1988) Identification of motoneurons and interneurons in the spinal network for escapes initiated by the Mauthner cell in goldfish. J Neurosci 8:4192–4213PubMedGoogle Scholar
  280. Fetcho JR, Svoboda KR (1993) Fictive swimming elicited by electrical stimulation of the midbrain in goldfish. J Neurophysiol 70:765–780PubMedGoogle Scholar
  281. Fiebig E, Ebbesson SOE, Meyer DL (1983) Afferent connections of the optic tectum in the piranha (Serrasalmus nattereri). Cell Tissue Res 231:55–72PubMedGoogle Scholar
  282. Figdor MC, Stern CD (1993) Segmental organization of embryonic diencephalon. Nature 363:630–633PubMedGoogle Scholar
  283. Fine ML (1989) Embryonic, larval and adult development of the sonic neuromuscular system in the oyster toadfish. Brain Behav Evol 34:13–24PubMedGoogle Scholar
  284. Fine ML, Mosca PJ (1989) Anatomical study of the innervation pattern of the sonic muscle of the oyster toadfish. Brain Behav Evol 34:265–272PubMedGoogle Scholar
  285. Fine ML, Winn HE, Olla BL (1977) Sound production in fishes. In: Sebeok TA (ed) How animals communicate. University of Indiana Press, Bloomington, pp 472–518Google Scholar
  286. Fine ML, Keefer DA, Leichretz GR (1982) Testosterone uptake in the brainstem of a sound producing fish. Science 215:1265–1267PubMedGoogle Scholar
  287. Fine ML, Economus D, Radtke R, McClung JR (1984) Ontogeny and sexual dimorphism of the sonic motor nucleus in the oyster toadfish. J Comp Neurol 225:105–110PubMedGoogle Scholar
  288. Fine ML, Burns NM, Harris T (1990a) Ontogeny and sexual dimorphism of sonic muscle in the oyster toadfish. Can J Zool 68:1374–1381Google Scholar
  289. Fine ML, Keefer DA, Russel-Mergenthal H (1990b) Autoradiographic localization of estrogen-concentrating cells in the brain and pituitary of the oyster toadfish. Brain Res 536:207–219PubMedGoogle Scholar
  290. Finger TE (1975) The distribution of the olfactory tracts in the bullhead catfish, Ictalurus nebulosus. J Comp Neurol 161:125–141PubMedGoogle Scholar
  291. Finger TE (1976) Gustatory pathways in the bullhead catfish. I. Connections of the anterior ganglion. J Comp Neurol 165:513–526PubMedGoogle Scholar
  292. Finger TE (1978a) Gustatory pathways in the bullhead catfish. II. Facial lobe connections. J Comp Neurol 180:691–705PubMedGoogle Scholar
  293. Finger TE (1978b) Cerebellar afferents in teleost catfish (Ictaluridae). J Comp Neurol 181:173–182PubMedGoogle Scholar
  294. Finger TE (1978c) Efferent neurons of the teleost cerebellum. Brain Res 153:608–614PubMedGoogle Scholar
  295. Finger TE (1980) Nonolfactory sensory pathway to the telencephalon in a teleost fish. Science 210:671–673PubMedGoogle Scholar
  296. Finger TE (1981) Enkephalinergic immunoreactivity in the gustatory lobes and visceral nuclei in the brains of goldfish and catfish. Neuroscience 6:2747–2758PubMedGoogle Scholar
  297. Finger TE (1982) Somatotopy in the representation of the pectoral fin and free fin rays in the spinal cord of the sea robin, Prionotus carolinus. Biol Bull 163:154–161Google Scholar
  298. Finger TE (1983a) Organization of the teleost cerebellum. In: Northcutt RG, Davis RE (eds) Fish neurobiology. 1. Brain stem and sense organs. University of Michigan Press, Ann Arbor, pp 261–284Google Scholar
  299. Finger TE (1983b) The gustatory system in teleost fish. In: Northcutt RG, Davis RE (eds) Fish neurobiology. 1. Brainstem and sense organs. University of Michigan Press, Ann Arbor, pp 285–309Google Scholar
  300. Finger TE (1984) Vagotomy induced changes in acetylcholinesterase and substance P-like immunoreactivity in the gustatory lobes of goldfish. Anat Embryol (Berl) 170:257–264Google Scholar
  301. Finger TE (1986) Electroreception in catfish: anatomy and electrophysiology. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 287–317Google Scholar
  302. Finger TE (1988) Sensorimotor mapping and oropharyngeal reflexes in goldfish, Carassius auratus. Brain Behav Evol 31:17–24PubMedGoogle Scholar
  303. Finger TE, Böttger B (1990) Transcellular labeling of taste bud cells by carbocyanine dye (DiI) applied to peripheral nerves in the barbels of the catfish, Ictalurus punctatus. J Comp Neurol 302:884–892PubMedGoogle Scholar
  304. Finger TE, Bullock TH (1982) Thalamic center for the lateral line system in the catfish Ictalurus nebulosus: evoked potential evidence. J Neurobiol 13:39–47PubMedGoogle Scholar
  305. Finger TE, Kalil K (1985) Organization of motoneuronal pools in the rostral spinal cord of the sea robin, Prionotus carolinus. J Comp Neurol 239:384–390PubMedGoogle Scholar
  306. Finger TE, Kanwal JS (1992) Ascending general visceral pathways within the brainstem of two teleost fishes: Ictalurus punctatus and Carassius auratus. J Comp Neurol 320:509–520PubMedGoogle Scholar
  307. Finger TE, Karten HJ (1978) The accessory optic system in teleosts. Brain Res 153:144–149PubMedGoogle Scholar
  308. Finger TE, Morita Y (1985) Two gustatory systems: facial and vagal gustatory nuclei have different brainstem connections. Science 227:776–779PubMedGoogle Scholar
  309. Finger TE, Tong SL (1984) Central organization of eight nerve and mechanosensory lateral line systems in the brainstem of ictalurid catfish. J Comp Neurol 229:129–151PubMedGoogle Scholar
  310. Finger TE, Bell CC, Russell CJ (1981) Electrosensory pathways to the valvula cerebelli in mormyrid fish. Exp Brain Res 42:23–33PubMedGoogle Scholar
  311. Finger TE, Bell CC, Carr CE (1986) Comparison among electroreceptive teleosts: why are electrosensory systems so similar. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 465–481Google Scholar
  312. Fraley SM, Sharma SC (1986) Topography of retinodiencephalic projections in adult channel catfish Ictalurus punctatus. Brain Res 385:179–184PubMedGoogle Scholar
  313. Frankenhuys-van den Heuvel THM, Nieuwenhuys R (1984) Distribution of serotonin-immunoreactivity in the diencephalon and mesencephalon of the trout, Salmo gairdneri. Cell bodies, fibers and terminals. Anat Embryol (Berl) 169:193–204Google Scholar
  314. Freedman EG, Olyerchuk J, Marchaterre MA, Bass AH (1989) A temporal analysis of testosterone-induced changes in electric organs and electric organ discharges of mormyrid fishes. J Neurobiol 20:619–634PubMedGoogle Scholar
  315. Fridberg G, Bern HA (1968) The urophysis and the caudal neurosecretory system of fishes. Biol Rev 43:175–199PubMedGoogle Scholar
  316. Friedlander MJ (1983) The visual prosencephalon of teleosts. In: Davis RE, Northcutt RG (eds) Fish neurobiology. 2. Higher brain areas and functions. University of Michigan Press, Ann Arbor, pp 91–115Google Scholar
  317. Fritzsch B, Wilm C (1992) The development of ipsilateral retinal projections into the tectum in the cichlid fish Haplochromis burtoni: a DiI study in fixed tissue. J Neurobiol 23:708–719PubMedGoogle Scholar
  318. Fritzsch B, Niemann U, Bleckmann H (1990) A discrete projection of the sacculus and layers to a distinct brainstem nucleus in a catfish. Neurosci Lett 111:7–11PubMedGoogle Scholar
  319. Fryer JN, Boudreault-Chateauvert C, Kirby RP (1985) Pituitary afferents originating in the paraventricular organ (PVO) of the goldfish hypothalamus. J Comp Neurol 242:475–484PubMedGoogle Scholar
  320. Fujii K, Kobayashi H (1992) FMRFamide-like immunoreactivity in the brain and pituitary of the goldfish, Carassius auratus. Ann Anat 174:217–222PubMedGoogle Scholar
  321. Fujita I, Satou M, Ueda K (1984) A field-potential study of centripetal and centrifugal connections of the olfactory bulb in the carp, Cyprinus carpio (L). Brain Res 321:33–44PubMedGoogle Scholar
  322. Fujita I, Satou M, Ueda K (1985) Ganglion cells of the terminal nerve: morphology and electrophysiology. Brain Res 335:148–152PubMedGoogle Scholar
  323. Fujita I, Satou M, Ueda K (1988) Morphology of physiologically identified mitral cells in the carp olfactory bulb: a light microscopic study after intracellular staining with HRP. J Comp Neurol 267:253–268PubMedGoogle Scholar
  324. Fujita I, Sorensen PW, Stacey NE, Hara TJ (1991) The olfactory system, not the terminal nerve, functions as the primary chemosensory pathway mediating responses to sex pheromones in male goldfish. Brain Behav Evol 38:313–321PubMedGoogle Scholar
  325. Gage SP (1983) The brain of Diemyctilus viridescence from larval to adult life and comparison with the brain of Amia and Petromyzon. In: The Wilder quarter century book. Ithaca, pp 259-314Google Scholar
  326. Galeo AJ, Fine ML, Stevenson JA (1987) Embryonic and larval development of the sonic motor nucleus in the oyster toadfish. J Neurobiol 18:359–373PubMedGoogle Scholar
  327. Garcia JM, Alvarez-Uria M (1982) Ultrastructure of the’ smooth endoplasmic reticulum cell’ in the nucleus recessus lateralis of Salmo gairdneri Richardson. Cell Tissue Res 227:221–224PubMedGoogle Scholar
  328. Gestrin P, Sterling P (1977) Anatomy and physiology of goldfish oculomotor system. II. Firing patterns of neurons in abducens nucleus and surrounding medulla and their relation to eye movements. J Neurophysiol 40:573–588PubMedGoogle Scholar
  329. Gilat E, Hall DH, Bennett MVL (1986) The giant fiber and pectoral fin adductor motoneuron system in the hatchetfish. Brain Res 365:96–104PubMedGoogle Scholar
  330. Goehler LE, Finger TE (1992) Functional organization of vagal reflex systems in the brain stem of the goldfish, Carassius auratus. J Comp Neurol 319:463–478PubMedGoogle Scholar
  331. Gómez-Segade P, Anadón R (1988) Specialization in the diencephalon of advanced teleosts. J Morphol 197:71–103Google Scholar
  332. Gómez-Segade P, Anadón R, Gómez-Segade L (1989) Monoaminergic systems in the hypothalamus of the acanthopterygian Chelon labrosus, with special reference to the organum vasculosum hypothalami. Acta Zool (Stockh) 70:1–11Google Scholar
  333. Gómez-Segade P, Segade LAG, Anadón R (1991) Ultrastructure of the organum vasculosum laminae terminalis in the advanced teleost Chelon labrosus (Risso, 1826). J Hirnforsch 32:69–77PubMedGoogle Scholar
  334. Gorlick DL (1989) Motor innervation of respiratory muscles and an opercular display muscle in Siamese fighting fish Betta splendens. J Comp Neurol 290:412–422PubMedGoogle Scholar
  335. Gorlick DL (1990) Neural pathway for aggressive display in Betta splendens. Midbrain and hindbrain control of Gillcover erection behavior. Brain Behav Evol 36:227–236PubMedGoogle Scholar
  336. Gotow T, Triller A, Kom H (1990) Differential distribution of serotoninergic inputs on the goldfish Mauthner cell. J Comp Neurol 292:255–268PubMedGoogle Scholar
  337. Graf W, Baker R (1983) Adaptive changes of the vestibuloocular reflex in flatfish are achieved by reorganization of central nervous pathways. Science 221:777–778PubMedGoogle Scholar
  338. Graf W, Baker R (1985a) The vestibuloocular reflex of the adult flatfish. I. Oculomotor organization. J Neurophysiol 54:887–899PubMedGoogle Scholar
  339. Graf W, Baker R (1985b) The vestibuloocular reflex of the adult flatfish. II. Vestibulooculomotor connectivity. J Neurophysiol 54:900–916PubMedGoogle Scholar
  340. Graf W, Baker R (1990) Neuronal adaptation accompanying metamorphosis in the flatfish. J Neurobiol 21:1136–1152PubMedGoogle Scholar
  341. Graf W, McGurk JF (1985) Peripheral and central oculomotor organization in the goldfish, Carassius auratus. J Comp Neurol 239:391–401PubMedGoogle Scholar
  342. Grant K, Bell CC, Clausse S, Ravaille M (1986) Morphology and physiology of the brainstem nuclei controlling the electric organ discharge in mormyrid fish. J Comp Neurol 245:514–530PubMedGoogle Scholar
  343. Grant K, Clausse S, Libouban S, Szabo T (1989) Serotoninergic neurons in the mormyrid brain and their projection to the preelectromotor and primary electrosensory centers: immunohistochemical study. J Comp Neurol 281:114–128PubMedGoogle Scholar
  344. Grau EG, Nishioka RS, Young G, Bern HA (1985) Somatostatin-like immunoreactivity in the pituitary and brain of three teleost fish species: Somatostatin as a potential regulator of prolactin cell function. Gen Comp Endocrinol 59:350–357PubMedGoogle Scholar
  345. Grau HJ, Bastian J (1986) Neural correlates of novelty detection in pulse-type weakly electric fish. J Comp Physiol 159:191–200Google Scholar
  346. Gregory WA, Tweedle CD (1985) Horseradish peroxidase evidence for a spinal projection from the preoptic area of the goldfish, a light and electron microscopic study. Brain Res 341:82–91PubMedGoogle Scholar
  347. Grober MS, Bass AH (1991) Neuronal correlates of sex/role change in labrid fishes: LHRH-like immunoreactivity. Brain Behav Evol 38:302–312PubMedGoogle Scholar
  348. Grober MS, Bass AH, Burd G, Marchaterre MA, Segil N, Scholz K, Hodgson T (1987) The nervus terminalis ganglion in Anguilla rostrata: an immunocytochemical and HRP histochemical analysis. Brain Res 436:148–152PubMedGoogle Scholar
  349. Grober MS, Jackson IMD, Bass AH (1991) Gonadal steroids affect LHRH preoptic cell number in a sex/role changing fish. J Neurobiol 22:734–741PubMedGoogle Scholar
  350. Grober MS, Fox SH, Laughlin C, Bass AH (1994) GnRH cell size and number in a teleost fish with two male reproductive morphs: sexual maturation, final sexual status and body size allometry. Brain Behav Evol 43:61–78PubMedGoogle Scholar
  351. Grover BG, Sharma SC (1979) Tectal projections in the goldfish (Carassius auratus): a degeneration study. J Comp Neurol 184:435–454PubMedGoogle Scholar
  352. Grover BG, Sharma SC (1981) Organization of extrinsic tectal connections in goldfish (Carassius auratus). J Comp Neurol 196:471–488PubMedGoogle Scholar
  353. Grzimek B (ed) (1973) Animal life encyclopedia, vols 4 and 5. Von Nostrand Reinhold, New YorkGoogle Scholar
  354. Guthrie DM (1990) The physiology of the optic tectum. In: Douglas RH, Djamgoz MBA (eds) The visual system offish. Chapman and Hall, London, pp 279–343Google Scholar
  355. Guthrie DM, Banks JR (1990) A correlative study of the physiology and morphology of the retinotectal pathway of the perch. Vis Neurosci 4:367–377PubMedGoogle Scholar
  356. Guthrie DM, Sharma SC (1991) Visual responses of morphologically identified tectal cells in the goldfish. Vis Res 31:507–524PubMedGoogle Scholar
  357. Hackett JT, Faber DS (1983a) Mauthner axon networks mediating supraspinal components of the startle response in the goldfish. Neuroscience 8:317–331PubMedGoogle Scholar
  358. Hackett JT, Faber DS (1983b) Relay neurons mediate collateral inhibition of the goldfish Mauthner cell. Brain Res 264:302–306PubMedGoogle Scholar
  359. Hackett JT, Buchheim A (1984) Ultrastructural correlates of electrical-chemical synaptic transmission in goldfish cranial motor nuclei. J Comp Neurol 224:425–426PubMedGoogle Scholar
  360. Hagedorn M, Womble M, Finger TE (1990) Synodontid catfish: a new group of weakly electric fish. Behavior and anatomy. Brain Behav Evol 35:268–277PubMedGoogle Scholar
  361. Hall DH, Gilat E, Bennett MVL (1985) Ultrastructure of the rectifying electrotonic synapses between giant fibers and pectoral fin adductor motor neurons in the hatchet fish. J Neurophysiol 14:825–834Google Scholar
  362. Hanneman E, Westerfield M (1989) Early expression of ace-tylcholinesterase activity in functionally distinct neurons of the zebrafish. J Comp Neurol 284:350–361PubMedGoogle Scholar
  363. Hansen A, Zeiske E (1993) Development of the olfactory organ in the zebrafish, Brachydanio rerio. J Comp Neurol 333:289–300PubMedGoogle Scholar
  364. Hara TJ (ed) (1992) Chemoreception. Chapman and Hall, LondonGoogle Scholar
  365. Hartlieb E, Stuermer CAO (1989) Pathfinding and target selection of goldfish retinal axons regenerating under TTX-induced impulse blockade. J Comp Neurol 284:148–168PubMedGoogle Scholar
  366. Haugedé-Carré F (1979) The mesencephalic exterolateral posterior nucleus of the mormyrid fish Bryenomyrus niger: efferent connections studied by the HRP method. Brain Res 178:179–184PubMedGoogle Scholar
  367. Haugedé-Carré F (1983) The mormyrid mesencephalon. II. The medio-dorsal nucleus of the torus semicircularis: afferent and efferent connections studied with the HRP method. Brain Res 268:1–14PubMedGoogle Scholar
  368. Haugedé-Carré F, Kirschbaum F, Szabo T (1977) On the development of the gigantocerebellum in the mormyrid fish Pollimyrus (Marcusenius) isidori. Neurosci Lett 6:209–213PubMedGoogle Scholar
  369. Haugedé-Carré F, Szabo T, Kirschbaum F (1979) Development of the gigantocerebellum of the weakly electric fish Pollimyrus. J Physiol (Paris) 75:381–395Google Scholar
  370. Hawkes R, Gravel C (1991) The modular cerebellum. Prog Neurobiol 36:309–327PubMedGoogle Scholar
  371. Hayama T, Caprio J (1989) Lobule structure and somatotopic organization of the medullary facial lobe in the channel catfish Ictalurus punctatus. J Comp Neurol 285:9–17PubMedGoogle Scholar
  372. Hayes WP, Meyer RL (1989a) Normal numbers of retinotectal synapses during the activity-sensitive period of optic regeneration in goldfish: HRP-EM evidence implicating synapse rearrangement and collateral elimination during map refinement. J Neurosci 9:1400–1413PubMedGoogle Scholar
  373. Hayes WP, Meyer RL (1989b) Impulse blockade by intraocular tetrodotoxin during optic regeneration in goldfish: HRP-EM evidence that the formation of normal numbers of optic synapses and the elimination of exuberant optic fibers is activity independent. J Neurosci 9:1414–1423PubMedGoogle Scholar
  374. Hayle TH (1973a) A comparative study of spinal projections to the brain (except cerebellum) in three classes of poikilo-thermic vertebrates. J Comp Neurol 149:463–476PubMedGoogle Scholar
  375. Hayle TH (1973b) A comparative study of spinocerebellar system in three classes of poikilothermic vertebrates. J Comp Neurol 149:477–496PubMedGoogle Scholar
  376. Heijdra YF, Nieuwenhuys R (1994) Topological analysis of the brainstem of the bowfin, Amia calva. J Comp Neurol 339:12–26PubMedGoogle Scholar
  377. Heiligenberg W (1986) Jamming avoidance responses. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 613–649Google Scholar
  378. Heiligenberg W (1987) Central processing of sensory information in electric fish. J Comp Physiol [A] 161:621–631Google Scholar
  379. Heiligenberg W (1988) Electrosensory maps form a substrate for the distributed and parallel control of behavioral responses in weakly electric fish. Brain Behav Evol 31:6–16PubMedGoogle Scholar
  380. Heiligenberg W (1990) Electrosensory systems in fish. Synapse 6:196–206PubMedGoogle Scholar
  381. Heiligenberg W, Dye J (1982) Labelling of electroreceptive afferents in a gymnotid fish by intracellular injection of HRP: the mystery of multiple maps. J Comp Physiol 148:287–296Google Scholar
  382. Heiligenberg W, Rose G (1985) Phase and amplitude computations in the midbrain of an electric fish: intracellular studies of neurons participating in the jamming avoidance response of Eigenmannia. J Neurosci 2:515–531Google Scholar
  383. Heiligenberg W, Rose G (1986) Gating of sensory information: joint computations of phase and amplitude data in the midbrain of the electric fish, Eigenmannia. J Comp Physiol [A] 159:311–324Google Scholar
  384. Heiligenberg W, Rose G (1987) The optic tectum of the gymnotiform electric fish, Eigenmannia: labeling of physiologically identified cells. Neuroscience 22:331–340PubMedGoogle Scholar
  385. Heiligenberg W, Finger T, Matsubara J, Carr R (1981) Input to the medullary pacemaker nucleus in the weakly electric fish, Eigenmannia (sternopygidae, gymnotiformes). Brain Res 211:418–423PubMedGoogle Scholar
  386. Heiligenberg W, Keller CH, Metzner W, Kawasaki M (1991) Structure and function of neurons in the complex of the nucleus electrosensorius of the gymnotiform fish Eigenmannia: relation and processing of electric signals in social communication. J Comp Physiol [A] 169:151–164Google Scholar
  387. Hermann HT (1971) Eye movement correlated units in mesencephalic oculomotor complex of goldfish. Brain Res 35:240–244PubMedGoogle Scholar
  388. Highstein SM (1991) The central nervous system efferent control of the organs of balance and equilibrium. Neurosci Res 12:13–30PubMedGoogle Scholar
  389. Highstein SM, Baker R (1985) Action of the efferent vestibular system on primary afferents in the toadfish, Opsanus tau. J Neurophysiol 54:370–384PubMedGoogle Scholar
  390. Highstein SM, Baker R (1986) Organization of the efferent vestibular nuclei and nerves of the toadfish, Opsanus tau. J Comp Neurol 243:309–325PubMedGoogle Scholar
  391. Highstein SM, Kitch R, Carey J, Baker R (1992) Anatomical organization of the brainstem octavolateralis area of the oyster toadfish, Opsanus tau. J Comp Neurol 319:501–518PubMedGoogle Scholar
  392. Hinojosa R (1973) Synaptic ultrastructure in the tangential nucleus of the goldfish (Carassius auratus). Am J Anat 137:159–186PubMedGoogle Scholar
  393. Hlavacek M, Tahar M, Libouban S, Szabo T (1984) The mormyrid brainstem. I. Distribution of brainstem neurones projecting to the spinal cord in Gnathonemus petersii, an HRP study. J Hirnforsch 6:603–615Google Scholar
  394. Hofer H, Meinel W, Erhardt H, Wolter A (1984) Preliminary electron-microscopical observations on the ampulla cauda-lis and the discharge of the material of Reissner’s fibre into the capillary system of the terminal part of the tail of ammocoetes (Agnathi). Gegenbaurs Morphol Jahrb 130:77–110PubMedGoogle Scholar
  395. Holmes RL, Ball JN (1974) The pituitary gland. A comparative account. Cambridge University Press, CambridgeGoogle Scholar
  396. Holmqvist BI, Carlberg M (1992) Galanin receptors in the brain of a teleost: autoradiographic distribution of binding sites in the Atlantic salmon. J Comp Neurol 326:44–60PubMedGoogle Scholar
  397. Holmqvist BI, Ekström P (1991) Galanin-like immunoreactivity in the brain of teleosts: distribution and relation to substance P, vasotocin, and isotocin in the Atlantic salmon (Salmo salar). J Comp Neurol 306:361–381PubMedGoogle Scholar
  398. Honkanen T, Ekström P (1990) An immunocytochemical study of the olfactory projections in the three-spined stickleback, Gasterosteus aculeatus L. J Comp Neurol 292:65–72PubMedGoogle Scholar
  399. Honkanen T, Ekström P (1991) An immunocytochemical study of the development of the olfactory system in the three-spined stickleback (Gasterosteus aculeatus L., Teleostei). Anat Embryol (Berl) 184:469–477Google Scholar
  400. Hopkins CD (1986) Behavior of Mormyridae. In: Bullock TH, Heiligenberg W (eds) Electroreception. Wiley, New York, pp 527–576Google Scholar
  401. Hopkins CD (1988) Neuroethology of electric communication. Annu Rev Neurosci 11:497–535PubMedGoogle Scholar
  402. Hornby PJ, Demski LS (1988) Functional-anatomical studies of neural control of heart rate in goldfish. Brain Behav Evol 31:181–192PubMedGoogle Scholar
  403. Hornby PJ, Piekut DT (1988) Immunoreactive dopamine β-hydroxylase in neuronal groups in the goldfish brain. Brain Behav Evol 32:252–256PubMedGoogle Scholar
  404. Hornby PJ, Piekut DT (1990) Distribution of catecholaminesynthesizing enzymes in goldfish brains: presumptive dopamine and norepinephrine neuronal organization. Brain Behav Evol 35:49–64PubMedGoogle Scholar
  405. Hornby PJ, Piekut DT, Demski LS (1987) Localization of immunoreactive tyrosine hydroxylase in the goldfish brain. J Comp Neurol 261:1–14PubMedGoogle Scholar
  406. Huber R, Rylander MK (1991) Quantitative histological studies of the optic tectum in six species of Notropis and Cyprinella (Cyprinidae, Teleostei). J Hirnforsch 32:309–316PubMedGoogle Scholar
  407. Huber R, Rylander MK (1992) Brain morphology and turbidity preference in Notropis and related genera (cyprinidae, teleostei). Environ Biol Fishes 33:153–165Google Scholar
  408. Ichikawa M (1975) The central projections of the olfactory tract in the goldfish, Carassius auratus. J Fac Sci Univ Tokyo 13:257–263Google Scholar
  409. Ichikawa M (1976) Fine structure of the olfactory bulb in the goldfish, Carassius auratus. Brain Res 115:53–56Google Scholar
  410. Ichikawa M, Ueda K (1979) Electron microscopic study of the termination of the centrifugal fibers in the goldfish olfactory bulb. Cell Tissue Res 197:257–262PubMedGoogle Scholar
  411. Inagaki N, Panula P, Yamadotani A, Wada H (1991) Organization of the histaminergic system in the brain of the teleost, Trachurus trachurus. J Comp Neurol 310:94–102PubMedGoogle Scholar
  412. Ito H (1970) Fine structures or the teleostean vagal lobe. Z Mikr Anat Forsch 83:65–89Google Scholar
  413. Ito H (1971) Fine structure of the carp torus longitudinalis. J Morphol 135:153–164Google Scholar
  414. Ito H (1974) Fine structure of the torus semicircularis of some teleosts. J Morphol 142:137–152PubMedGoogle Scholar
  415. Ito H, Kishida R (1975) Organization of the teleostean nucleus rotundus. J Morphol 147:89–108PubMedGoogle Scholar
  416. Ito H, Kishida R (1977a) Synaptic organization of the nucleus rotundus in some teleosts. J Morphol 151:397–416PubMedGoogle Scholar
  417. Ito H, Kishida R (1977b) Tectal afferent neurons identified by the retrograde HRP method in the carp telencephalon. Brain Res 130:142–145PubMedGoogle Scholar
  418. Ito H, Kishida R (1978a) Telencephalic afferent neurons identified by the retrograde HRP method in the carp diencephalon. Brain Res 149:211–215PubMedGoogle Scholar
  419. Ito H, Kishida R (1978b) Afferent and efferent fiber connections of the carp torus longitudinalis. J Comp Neurol 181:465–476PubMedGoogle Scholar
  420. Ito H, Murakami T (1984) Retinal ganglion cells in two teleost species, Sebastiscus marmoratus and Navodon modestus. J Comp Neurol 229:80–96PubMedGoogle Scholar
  421. Ito H, Vanegas H (1983) Cytoarchitecture and ultrastructure of nucleus prethalamicus, with special reference to degenerating afferents from optic tectum and telencephalon, in a teleost (Holocentrus ascensonis). J Comp Neurol 221:401–415PubMedGoogle Scholar
  422. Ito H, Vanegas H (1984) Visual receptive thalamopetal neurons in the optic tectum of teleosts (Holocentridae). Brain Res 290:201–210PubMedGoogle Scholar
  423. Ito H, Yoshimoto M (1990) Cytoarchitecture and fibre connections of the nucleus lateralis valvulae in the carp (Cyprinus carpio). J Comp Neurol 298:385–399PubMedGoogle Scholar
  424. Ito H, Morita Y, Sakamoto N, Ueda S (1980a) Possibility of telencephalic visual projections in teleosts, Holocentrus. Brain Res 197:219–222PubMedGoogle Scholar
  425. Ito H, Butler AB, Ebbesson SOE (1980b) An ultrastructural study of the normal synaptic organization of the optic tectum and the degenerating tectal afferents from retina, telencephalon, and contralateral tectum in a teleost, Holocentrus rufus. J Comp Neurol 191:639–659PubMedGoogle Scholar
  426. Ito H, Tanaka H, Sakamoto N, Morita Y (1981) Isthmic afferent neurons identified by the retrograde HRP method in a teleost, Navodon modestus. Brain Res 207:163–169PubMedGoogle Scholar
  427. Ito H, Murakami T, Morita Y (1982a) An indirect telencephalo-cerebellar pathway and its relay nucleus in teleosts. Brain Res 249:1–13PubMedGoogle Scholar
  428. Ito H, Sakamoto N, Takatsuji K (1982b) Cytoarchitecture, fiber connections, and ultrastructure of nucleus isthmi in a teleost (Navodon modestus) with a special reference to degenerating isthmic afferents from optic tectum and nucleus pretectalis. J Comp Neurol 205:299–311PubMedGoogle Scholar
  429. Ito H, Vanegas H, Murakami T, Morita Y (1984) Diameters and terminal patterns of retinofugal axons in their target areas. An HRP study in two teleosts (Sebastiscus and Navodon). J Comp Neurol 230:179–197PubMedGoogle Scholar
  430. Ito H, Murakami T, Fukuota T, Kishida R (1986) Thalamic fiber connections in a teleost (Sebastiscus marmoratus): visual, somatosensory, octavolateral and cerebellar relay region to the telencephalon. J Comp Neurol 250:215–227PubMedGoogle Scholar
  431. Ito H, Yoshimoto M, Uchiyama H, Somiya H, Negsihi K (1992) Changes in retinal projections and ganglion cell morphology after unilateral enucleation in the common carp. Brain Behav Evol 40:197–208PubMedGoogle Scholar
  432. Ito M (1984) The cerebellum and neurol control. Raven, New YorkGoogle Scholar
  433. Janetzko A, Zimmermann H, Volknandt W (1987) The electromotor system of the electric catfish (Malapterurus electricus): a fine-structural analysis. Cell Tissue Res 247:613–624PubMedGoogle Scholar
  434. Jansen WF (1973) The saccus vasculosus of the rainbow trout, Salmo gairdneri Richardson. A cytochemical and enzymecytochemical study, particularly with respect to coronet cells and glial cells. Nether J Zool 25(3):309–331Google Scholar
  435. Jansen WF (1985) Structure and function of the paraphysis cerebri in the rainbow trout, Salmo gairdneri Richardson. Cell Tissue Res 242:127–143Google Scholar
  436. Jansen WF (1973) De sacculus vasculosus en de regulatie van de samenstelling van de liquor cerebrospinalis. Thesis, University of Utrecht, NetherlandsGoogle Scholar
  437. Jansen WF, van Dort JB (1978) Further investigations on the structure and function of the saccus vasculosus of the rainbow trout, Salmo gairdneri Richardson. Cell Tissue Res 187:61–68PubMedGoogle Scholar
  438. Jeserich G (1982) Ingrowth of optic nerve fibers and onset of myelin ensheathment in the optic tectum of the trout (Salmo gairdneri). Cell Tissue Res 227:201–211PubMedGoogle Scholar
  439. Johnston SA, Maler L (1992) Anatomical organization of the hypophysiotrophic systems in the electric fish, Apteronotus leptorhynchus. J Comp Neurol 317:421–437PubMedGoogle Scholar
  440. Johnston SA, Maler L, Tinner B (1990) The distribution of serotonin in the brain of Apteronotus leptorhynchus: an immunohistochemical study. J Chem Neuroanat 3:429–465PubMedGoogle Scholar
  441. Jorgensen JM, Bullock TH (1987) Organization of the ampullary organs of the African knife fish Xenomystus nigri (Teleostei: Notopteridae). J Neurocytol 16:311–315PubMedGoogle Scholar
  442. Jüch PJW, Luiten PGM (1981) Anatomy of respiratory rhythmic systems in brain stem and cerebellum of the carp. Brain Res 230:51–64PubMedGoogle Scholar
  443. Kageyama GH, Meyer RL (1988a) Laminar and sublaminar ultracytochemical localization of cytochrome oxydase in the optic tectum of normal goldfish. J Comp Neurol 278:498–520PubMedGoogle Scholar
  444. Kageyama GH, Meyer RL (1988b) Laminar histochemical and cytochemical localization of cytochrome oxydase in the goldfish retina and optic tectum in response to deafferentation and during regeneration. J Comp Neurol 278:521–542PubMedGoogle Scholar
  445. Kageyama GH, Meyer RL (1989) Glutamate-immunoreactivity in the retina and optic tectum of goldfish. Brain Res 503:118–127PubMedGoogle Scholar
  446. Kah O, Chambolle P (1983) Serotonin in the brain of the goldfish, Carassius auratus. An immunocytochemical study. Cell Tissue Res 234:319–333PubMedGoogle Scholar
  447. Kah O, Chambolle P, Thibault J, Geffard M (1984) Existence of dopaminergic neurons in the preoptic region of the goldfish. Neurosci Lett 48:293–298PubMedGoogle Scholar
  448. Kah O, Breton B, Dulka JG, Nunez-Rodriguez J, Peter RE, Corrigan A, Riveri JE, Vale WW (1986) A reinvestigation of the Gn-RH (gonadotrophin-releasing hormone) systems in the goldfish brain using antibodies to salmon Gn-RH. Cell Tissue Res 224:327–337Google Scholar
  449. Kah O, Zanuy S, Mañanos E, Anglade L, Carillo M (1991) Distribution of salmon gonadotropin releasing-hormone in the brain and pituitary of the sea bass (Dicentrarchus labrax). An immunocytochemical and immunoenzymoessay study. Cell Tissue Res 266:129–136Google Scholar
  450. Kaiserman-Abramof IR, Palay SL (1969) Fine structural studies of the cerebellar cortex in a mormyrid fish. In: Llinás R (ed) Neurobiology of cerebellar evolution and development. Am Med Assoc Educ Res Found, Chicago, pp 171–205Google Scholar
  451. Källén B (1950) A contribution to the ontogenetic development of the nuclei in the forebrain in Lepisosteus. Acta Anat 4:297–308Google Scholar
  452. Kanwal JS, Caprio J (1983) An electrophysiological investigation of the oro-pharyngeal (IX–X) taste system of the channel catfish, Ictalurus punctatus. J Comp Physiol 150:345–357Google Scholar
  453. Kanwal JS, Caprio J (1987) Central projections of the glossopharyngeal and vagal nerves in the channel catfish, Ictalurus punctatus: clues to differential processing of visceral inputs. J Comp Neurol 264:216–230PubMedGoogle Scholar
  454. Kanwal JS, Finger TF (1992) Central representation and projections of gustatory systems. In: Hara TJ (ed) Fish chemoreception. Chapman and Hall, London, pp 79–103Google Scholar
  455. Kanwal JS, Finger TE, Caprio J (1988) Forebrain connections of the gustatory system in ictalurid fishes. J Comp Neurol 278:353–376PubMedGoogle Scholar
  456. Karten HJ, Finger TE (1976) A direct thalamo-cerebellar pathway in pigeon and catfish. Brain Res 102:335–338PubMedGoogle Scholar
  457. Kaul S, Vollrath L (1974a) The goldfish pituitary. I. Cytology. Cell Tissue Res 154:211–230PubMedGoogle Scholar
  458. Kaul S, Vollrath L (1974b) The goldfish pituitary. II. Innervation. Cell Tissue Res 154:231–249PubMedGoogle Scholar
  459. Kawasaki M, Heiligenberg W (1988) Individual prepacemaker neurons can modulate the pacemaker cycle of the gymnotiform electric fish, Eigenmannia. J Comp Physiol [A] 162:13–21Google Scholar
  460. Kawasaki M, Heiligenberg W (1989) Distinct mechanisms of modulation in a neural oscillator generate different social signals in the electric fish Hypopomus. J Comp Physiol [A] 165:731–741Google Scholar
  461. Kawasaki M, Heiligenberg W (1990) Different classes of glutamate receptors and GABA mediate distinct modulations of a neuronal oscillator, the medullary pacemaker of a gymnotiform electric fish. J Neurosci 10:3896–3904PubMedGoogle Scholar
  462. Kawasaki M, Maler L, Rose GJ, Heiligenberg W (1988a) Anatomical and functional organization of the prepacemaker nucleus in gymnotiform electric fish: the accommodation of two behaviors in one nucleus. J Comp Neurol 276:113–131PubMedGoogle Scholar
  463. Kawasaki M, Rose G, Heiligenberg W (1988b) Temporal hyperacuity in single neurons of electric fish. Nature 336:173–177PubMedGoogle Scholar
  464. Keller CH (1988) Stimulus discrimination in the diencephalon of Eigenmannia. The emergence and sharpening of a sensory filter. J Comp Physiol [A] 162:747–757Google Scholar
  465. Keller CH, Heiligenberg W (1989) From distributed sensory processing to discrete motor representations in the diencephalon of the electric fish Eigenmannia. J Comp Physiol [A] 164:565–576Google Scholar
  466. Keller CH, Maler L, Heiligenberg W (1990) Structural and functional organization of a diencephalic sensory-motor interface in the gymnotiform fish, Eigenmannia. J Comp Neurol 293:347–376PubMedGoogle Scholar
  467. Keller CH, Kawasaki M, Heiligenberg W (1991) The control of pacemaker modulations for social communication in the weakly electric fish Sternopygus. J Comp Physiol [A] 169:441–450Google Scholar
  468. Kidokoro Y (1969) Cerebellar and vestibular control of fish oculomotor neurones. In: Llinás R (ed) Neurobiology of cerebellar evolution and development. Am Med Ass Educ Res Found, Chicago, pp 257–276Google Scholar
  469. Kim YS, Stumpf WE, Sar M (1978) Topography of estrogen target cells in the forebrain of goldfish, Carassius auratus. J Comp Neurol 182:611–620PubMedGoogle Scholar
  470. Kimmel CB, Powell SL, Metcalfe WK (1982) Brain neurons which project to the spinal cord in young larvae of the zebrafish. J Comp Neurol 205:112–127PubMedGoogle Scholar
  471. Kimmel CB, Metcalfe WK, Schabtach E (1985) T reticular interneurons: a class of serially repeating cells in the zebra-fish hindbrain. J Comp Neurol 233:365–376PubMedGoogle Scholar
  472. King WM, Schmidt JT (1991) The long lasting component of retinotectal transmission: enhancement by stimulation of nucleus isthmi or tectobulbar tract and block by nicotinic cholinergic antagonists. Neuroscience 40:701–712PubMedGoogle Scholar
  473. King WM, Schmidt JT (1993) Nucleus isthmi in goldfish: in vitro recordings and fiber connections revealed by HRP injections. Vis Neurosci 10:419–437PubMedGoogle Scholar
  474. Kirschbaum F, Meunier F, Tsuji S (1978) ‘Naked’ spinal cord on a non-segmented baton-like bony structure in the tail of the electric fish Eigenmannia virescens (Gymnotoidei). Cell Tissue Res 187:263–269PubMedGoogle Scholar
  475. Kirschbaum F, Denizot JP, Tsuji S (1979) On the electromotor neurons of both electric organs of Pollimyrus isidori (Mormyridae, Teleostei). J Physiol (Paris) 75:429–433Google Scholar
  476. Kishida K (1979) Comparative study on the teleostean optic tectum. Lamination and cytoarchitecture. J Hirnforsch 20:57–67PubMedGoogle Scholar
  477. Kiyohara S, Shiratani T, Yamashita S (1985a) Peripheral and central distribution of major branches of the facial taste nerve in the carp. Brain Res 325:57–69PubMedGoogle Scholar
  478. Kiyohara S, Hidaka I, Kitoh J, Yamashita S (1985b) Mechanical sensitivity of the facial nerve fibers innervating the anterior palate of the puffer, Fugu pardalis and their central projection on the primary taste center. Brain Res 157:705–716Google Scholar
  479. Kiyohara S, Houman H, Yamashita S, Caprio J, Marui T (1986) Morphological evidence for a direct projection of trigeminal nerve fibers to the primary gustatory center in the sea catfish Plotosus anguillaris. Brain Res 379:353–357PubMedGoogle Scholar
  480. Knudsen El (1976a) Midbrain responses to electro receptive input in catfish: evidence of orientation preferences and somatotopic organization. J Comp Physiol 106:51–67Google Scholar
  481. Knudsen El (1976b) Midbrain units in catfish. Responses properties to electroreceptive input. J Comp Physiol 109:215–235Google Scholar
  482. Knudsen EI (1977) Distinct auditory and lateral line nuclei in the midbrain of catfishes. J Comp Neurol 173:417–432PubMedGoogle Scholar
  483. Knudsen EI (1978) Functional organization in electroreceptive midbrain of the catfish. J Neurophysiol 41:350–364PubMedGoogle Scholar
  484. Kock J-H, Reuter T (1978) Retinal ganglion cells in the crucian carp (Carassius carassius). I. Size and number of somata in eyes of different size. J Comp Neurol 179:535–548PubMedGoogle Scholar
  485. Kohno K, Noguchi N (1986) Large myelinated club endings on the Mauthner cell in the goldfish. Anat Embryol (Berl) 173:361–370Google Scholar
  486. König B, Bonn U (1990) SRIF-like immunoreactivity in the brain and pituitary of Tinca tinca (Cyprinidae, Teleostei). J Hirnforsch 31:227–236PubMedGoogle Scholar
  487. Korn H, Bennett MVL (1972) Electrotonic coupling between teleost oculomotor neurons; restriction to somatic regions and relation to function of somatic and dendritic sites of impulse initiation. Brain Res 38:433–439PubMedGoogle Scholar
  488. Korn H, Sotelo C, Bennett MVL (1977) The lateral vestibular nucleus of the toadfish Opsanus tau: ultrastructural and electrophysiological observations with special reference to electrotonic transmission. Neuroscience 2:851–884Google Scholar
  489. Körtje KH, Weber H, Rahmann H (1991) Morphogenetic development of the area octavolateralis in the cichlid fish Oreochromis mossambicus. J Hirnforsch 32:491–495PubMedGoogle Scholar
  490. Kosaka T (1980) Ruffed cell: a new type of neuron with a distinctive initial unmyelinated portion of the axons in the olfactory bulb of the goldfish. II. Fine structure of the ruffed cell. J Comp Neurol 193:119–145PubMedGoogle Scholar
  491. Kosaka T, Hama K (1979) Ruffed cell: a new type of neuron with a distinctive initial unmyelinated portion of the axons in the olfactory bulb of the goldfish. I. Golgi impregnation and serial thin section studies. J Comp Neurol 186:301–320PubMedGoogle Scholar
  492. Kosaka T, Hama K (1980) Presence of the ruffed cell in the olfactory bulb of the catfish, Parasilurus asotus, and the sea eel, Conger myriaster. J Comp Neurol 193:103–117PubMedGoogle Scholar
  493. Kosaka T, Hama K (1981) Ruffed cell: a new type of neuron with a distinctive initial unmyelinated portion of the axon in the olfactory bulb of the goldfish (Carassius auratus). III. Three-dimensional structure of the ruffed cell dendrite. J Comp Neurol 201:571–587PubMedGoogle Scholar
  494. Kosaka T, Hama K (1982) Structure of the mitral cell in the olfactory bulb of the goldfish (Carassius auratus). J Comp Neurol 212:365–384PubMedGoogle Scholar
  495. Kosaka T, Hama K (1982/1983) Synaptic organization in the teleost olfactory bulb. J Physiol (Paris) 78:707–719Google Scholar
  496. Kotrschal K, Jürgen H (1988) Patterns of brain morphology in Mid-European cyprinidae (pisces, teleostei). A quantitative histological study. J Hirnforsch 29:341–352PubMedGoogle Scholar
  497. Kotrschal K, Whitear M (1988) Chemosensory anterior dorsal fin in rocklings (Gaidropsarus and Ciliata, teleostei, gadi-dae): somatotopic representation of the ramus recurrens facialis as revealed by transganglionic transport of HRP. J Comp Neurol 268:109–120PubMedGoogle Scholar
  498. Kotrschal K, Whitear M, Finger TE (1993) Spinal and facial innervation of the skin in the gadid fish Ciliata mustela (Teleostei). J Comp Neurol 331:407–417PubMedGoogle Scholar
  499. Kriebel RM (1980) The caudal neurosecretory system of Poecilia sphenops (Poeciliidae). J Morphol 165:157–165PubMedGoogle Scholar
  500. Kriebel RM, Burke JD, Meetz GD (1979) Morphologic features of the caudal neurosecretory system in the blueback herring, Pomolobus aestivalis. Anat Rec 195:553–572PubMedGoogle Scholar
  501. Kudo H, Ueda H, Kawamura H, Aida K, Yamauchi K (1994) Ultrastructural demonstration of salmon-type gonadotropin-releasing hormone (sGnRH) in the olfactory system of masu salmon (Oncorhynchus masou). Neurosci Lett 166:187–190PubMedGoogle Scholar
  502. Kusunoki T, Kishida R, Kiriyama H (1977) The cytoarchitec-tonics of the teleostean (gobiid) telencephalon. Characteristic structures in the lobar region. Yokohama Med Bull 28:83–111Google Scholar
  503. Kuwada JY (1986) Cell recognition by neuronal growth cones in a simple vertebrate embryo. Science 233:740–746PubMedGoogle Scholar
  504. Kuwada JY, Bernhardt RR, Chitnis AB (1990a) Pathfinding by identified growth cones in the spinal cord of zebrafish embryos. J Neurosci 10:1299–1308PubMedGoogle Scholar
  505. Kuwada JY, Bernhardt RR, Nguyen N (1990b) Development of spinal neurons and tracts in the zebrafish embryo. J Comp Neurol 302:617–628PubMedGoogle Scholar
  506. Ladlich F, Fine ML (1992) Localization of pectoral fin moto-neurons (sonic and hovering) in the croaking gourami Tri-chopsis vittatus. Brain Behav Evol 39:1–7Google Scholar
  507. Lamb CF, Caprio J (1992) Convergence of oral and extraoral information in the superior secondary gustatory nucleus of the channel catfish. Brain Res 588:201–211PubMedGoogle Scholar
  508. Lamb CF, Caprio J (1993a) Diencephalic gustatory connections in the channel catfish. J Comp Neurol 337:400–418PubMedGoogle Scholar
  509. Lamb CF, Caprio J (1993b) Taste and tactile responsiveness of neurons in the posterior diencephalon of the channel catfish. J Comp Neurol 337:419–430PubMedGoogle Scholar
  510. Landsman RE (1993) The effects of captivity on the electric organ discharge and plasma hormone levels in Gnathonemus petersii (Mormyriformes). J Comp Physiol [A] 172:639–631Google Scholar
  511. Langdon RB, Freeman JA (1986) Antagonists of glutaminergic neurotransmission block retinotectal transmission in goldfish. Brain Res 398:169–174PubMedGoogle Scholar
  512. Langdon RB, Freeman JA (1987) Pharmacology of retinotectal transmission in the goldfish: effects of nicotinic ligands, strychnine and kynurenic acid. J Neurosci 7:760–773PubMedGoogle Scholar
  513. Langdon RB, Manis PB, Freeman JA (1988) Goldfish retinotectal transmission in vitro: component current sinksource pairs isolated by varying calcium and magnesium levels. Brain Res 441:299–308PubMedGoogle Scholar
  514. Lannoo MJ, Maler L (1990) Interspecific variation in the projection of primary afferents onto the electrosensory lateral line lobe of weakly electric teleosts: different solutions to the same mapping problem. J Comp Neurol 294:153–160PubMedGoogle Scholar
  515. Lannoo MJ, Maler L, Tinner B (1989a) Ganglion cell arrangement and axonal trajectories in the anterior lateral line nerve of the weakly electric fish Apteronotus leptorhynchus (Gymnotiformes). J Comp Neurol 280:331–342PubMedGoogle Scholar
  516. Lannoo MJ, Maler L, Zakon H (1989b) Receptor position, not nerve branch, determines electroreceptor somatotopy in the gymnotiform fish (Apteronotus leptorhynchus). Neurosci Lett 97:11–17PubMedGoogle Scholar
  517. Lannoo MJ, Vischer HA, Maler L (1990) Development of the electrosensory nervous system of Eigenmannia (Gymnotiformes). II. The electrosensory lateral line lobe, midbrain, and cerebellum. J Comp Neurol 294:37–58PubMedGoogle Scholar
  518. Lannoo MJ, Brochu G, Maler L, Hawkes R (1991a) Zebrin II immunoreactivity in the rat and in the weakly electric teleost Eigenmannia (Gymnotiformes) reveals three modes of Purkinje cell development. J Comp Neurol 310:215–233PubMedGoogle Scholar
  519. Lannoo MJ, Ross L, Maler L, Hawkes R (1991b) Development of the cerebellum and its extracerebellar Purkinje cell projection in teleost fishes as determined by zebrin II immunocytochemistry. Prog Neurobiol 37:329–363PubMedGoogle Scholar
  520. Lannoo MJ, Maler L, Hawkes R (1992) Zebrin II distinguishes the ampullary organ receptive map from the tuberous organ receptive maps during development in the teleost electrosensory lateral line lobe. Brain Res 586:176–180PubMedGoogle Scholar
  521. Lannoo MJ, Maler L, Hawkes R (1993) Collateral sprouting in the electrosensory lateral line lobe of weakly electric teleosts (gymnotiformes) following ricin ablation. J Comp Neurol 333:246–256PubMedGoogle Scholar
  522. Lara JM, Alonso JR, Vecino E, Coveñas R, Aijon J (1989) Neuroglia in the optic tectum of teleosts. J Hirnforsch 30:465–472PubMedGoogle Scholar
  523. Larsell O (1967) The comparative anatomy and histology of the cerebellum from myxinoids through birds. University of Minnesota Press, MinneapolisGoogle Scholar
  524. Lauder GV, Liem KF (1983a) Patterns of diversity and evolution in ray-finned fishes. In: Northcutt RG, Davis RE (eds) Fish neurobiology. 1. Brainstem and sense organs. University of Michigan Press, Ann Arbor, pp 1–24Google Scholar
  525. Lauder GV, Liem KF (1983b) The evolution and interrelationships of the actinopterygian fishes. Bull Mus Comp Zool 150:95–197Google Scholar
  526. Laudel TP, Lim T-M (1993) Development of the dorsal root ganglion in a teleost, Oreochromis mossambicus (Peters). J Comp Neurol 327:141–150PubMedGoogle Scholar
  527. Laufer M, Vanegas H (1974) The optic tectum of a perciform teleost. II. Fine structure. J Comp Neurol 154:61–96PubMedGoogle Scholar
  528. Lázár G, Libouban S, Szabo T (1984) The mormyrid mesencephalon. III. Retinal projections in a weakly electric fish, Gnathonemus petersii. J Comp Neurol 230:1–12PubMedGoogle Scholar
  529. Lázár G, Toth P, Szabo T (1987) Retinal projections in gymnotid fishes. J Hirnforsch 28:13–26PubMedGoogle Scholar
  530. Lázár G, Szabo T, Libouban S, Ravaille-Veron M, Toth P, Bräntle K (1992) Central projections and motor nuclei of the facial, glossopharyngeal and vagus nerves in the mormyrid fish Gnathonemus petersii. J Comp Neurol 325:343–358PubMedGoogle Scholar
  531. Lee LT (1984) Response of cerebellum to stimulation of telencephalon in the catfish (Ictalurus nebulosus). J Neuro-physiol 51:1394–1408Google Scholar
  532. Lee LT, Bullock TH (1984) Sensory representation in the cerebellum of the catfish. Neuroscience 13:157–169PubMedGoogle Scholar
  533. Lee LT, Bullock TH (1990a) Cerebellar units show several types of early responses to telencephalic stimulation in catfish. Brain Behav Evol 35:278–290PubMedGoogle Scholar
  534. Lee LT, Bullock TH (1990b) Cerebellar units show several types of long-lasting posttetanic responses to telencephalic stimulation in catfish. Brain Behav Evol 35:291–301PubMedGoogle Scholar
  535. Lee LT, Bullock TH (1990c) Responses of the optic tectum to telencephalic stimulation in catfish. Brain Behav Evol 35:313–324PubMedGoogle Scholar
  536. Lee RKK, Eaton RC (1991) Identifiable reticulospinal neurons of the adult zebrafish, Brachydanio rerio. J Comp Neurol 304:34–52PubMedGoogle Scholar
  537. Lee RKK, Eaton RC, Zottoli SJ (1993) Segmental arrangement of reticulospinal neurons in the goldfish hindbrain. J Comp Neurol 329:539–556PubMedGoogle Scholar
  538. Leghissa S (1955) La struttura microscópica e la citoarchitettonica del tetto ottico dei pesci teleostei. Z Anat Entw Gesch 118:427–463Google Scholar
  539. Leonard RB, Willis WD (1979) The organization of the electromotor nucleus and extraocular motor nuclei in the star-gazer (Astroscopus graecum). J Comp Neurol 183:397–414PubMedGoogle Scholar
  540. Levine RI (1989) Organization of astrocytes in the visual pathways of the goldfish: an immunohistochemical study. J Comp Neurol 285:231–245PubMedGoogle Scholar
  541. Levine RI, Dethier S (1985) The connections between the olfactory bulb and the brain in the goldfish. J Comp Neurol 237:427–444PubMedGoogle Scholar
  542. Levine RI, Dethier S (1988) Anomalous retrograde labeling of brain cells from the eye in the goldfish: evidence for long distance growth of sprouted neurites. Exp Neurol 102:153–166PubMedGoogle Scholar
  543. Lewis D, Teyler TJ (1986) Long-term potentation in the goldfish optic tectum. Brain Res 375:246–250PubMedGoogle Scholar
  544. Leyhausen C, Kirschbaum F, Szabo T, Erdelen M (1987) Differential growth in the brain of the weakly electric fish, Apte-ronotus leptorhynchus (Gymnotiformes), during ontogenesis. Brain Behav Evol 30:230–248PubMedGoogle Scholar
  545. Libouban S, Szabo T (1977) An integration centre of the mormyrid fish brain: the auricula cerebelli. An HRP study. Neurosci Lett 6:115–119PubMedGoogle Scholar
  546. Lin JW, Faber DS (1988) An efferent inhibition of auditory afferents mediated by the goldfish Mauthner cell. Neuro-science 24:829–836Google Scholar
  547. Lin J-W, Faber DS, Wood MR (1983) Organized projection of the goldfish saccular nerve onto the Mauthner cell lateral dendrite. Brain Res 274:319–324PubMedGoogle Scholar
  548. Liu DWC, Westerfield M (1990) The formation of terminal fields in the absence of competitive interactions among primary motoneurons in the zebrafish. J Neurosci 10:3947–3959PubMedGoogle Scholar
  549. Loew ER, McFarland WN (1990) The underwater visual environment. In: Douglas RH, Djamgoz MBA (eds) The visual system of fish. Chapman and Hall, London, pp 1–43Google Scholar
  550. Losier BJ, Matsubara JA (1990a) Comparison of calbindin D 28K and cytochrome c oxidase in electrosensory nuclei of high-and low-frequency weakly electric fish (Gymnotiformes). Cell Tissue Res 260:29–39Google Scholar
  551. Losier BJ, Matsubara JA (1990b) Light and electron microscopical studies on the spherical neurons in the electrosensory lateral line lobe of the gymnotiform fish, Sternopygus. J Comp Neurol 298:237–249PubMedGoogle Scholar
  552. Lu Z, Fay RR (1993) Acoustic response properties of single units in the torus semicircularis of the goldfish, Carassius auratus. J Comp Physiol [A] 173:33–48Google Scholar
  553. Luiten PGM (1975) The central projections of the trigeminal, facial and anterior lateral line nerves in the carp (Cyprinus carpio L). J Comp Neurol 160:399–418PubMedGoogle Scholar
  554. Luiten PGM (1976) A somatotopic and functional representation of the respiratory muscles in the trigeminal and facial motor nuclei of the carp (Cyprinus carpio L.). J Comp Neurol 166:191–200PubMedGoogle Scholar
  555. Luiten PGM (1979) Proprioceptive reflex connections of head musculature and the mesencephalic trigeminal nucleus in the carp. J Comp Neurol 183:903–912PubMedGoogle Scholar
  556. Luiten PGM (1981) Afferent and efferent connections of the optic tectum in the carp (Cyprinus carpio L.). Brain Res 220:51–65PubMedGoogle Scholar
  557. Luiten PGM, Dijkstra-de Vlieger HP (1978) Extraocular muscle representation in the brainstem of the carp. J Comp Neurol 179:669–676PubMedGoogle Scholar
  558. Luiten PGM, van der Pers JNC (1977) The connections of the trigeminal and facial motor nuclei in the brain of the carp (Cyprinus carpio L.) as revealed by anterograde and retrograde transport of HRP. J Comp Neurol 174:575–590PubMedGoogle Scholar
  559. Ma PM (1994a) Catecholaminergic systems in the zebrafish. I. Number, morphology, and histochemical characteristics of neurons in the locus coeruleus. J Comp Neurol 344:242–255PubMedGoogle Scholar
  560. Ma PM (1994b) Catecholaminergic systems in the zebrafish. II. Projection pathways and pattern of termination of the locus coeruleus. J Comp Neurol 344:256–269PubMedGoogle Scholar
  561. Maggs A, Scholes J (1986) Glial domains and nerve fiber patterns in the fish retinotectal pathway. J Neurosci 6:424–438PubMedGoogle Scholar
  562. Maggs A, Scholes J (1990) Reticular astrocytes in the fish optic nerve: macroglia with epithelial characteristics form an axially repeated lacework pattern, to which nodes of ranvier are apposed. J Neurosci 10:1600–1614PubMedGoogle Scholar
  563. Malagon M, Vallarino M, Tonon MC, Vaudry H (1992) Localization and characterization of diazepam-binding inhibitor (DBI)-like peptides in the brain and pituitary of the trout (Salmo gairdneri). Brain Res 576:208–214PubMedGoogle Scholar
  564. Maler L (1973) The posterior lateral line lobe of a mormyrid fish. A Golgi study. J Comp Neurol 152:281–298PubMedGoogle Scholar
  565. Maler L (1974) The acousticolateral area of bony fishes and its cerebellar relations. Brain Behav Evol 10:130–145PubMedGoogle Scholar
  566. Maler L (1979) The posterior lateral line lobe of certain gymnotid fish: quantitative light microscopy. J Comp Neurol 183:323–364PubMedGoogle Scholar
  567. Maler L, Monaghan D (1991) The distribution of excitatory amino acid binding sites in the brain of an electric fish, Apteronotus leptorhynchus. J Chem Neuroanat 4:39–61PubMedGoogle Scholar
  568. Maler L, Mugnaini E (1994) Correlating gammaaminobutyric acidergic circuits and sensory function in the electrosensory lateral line lobe of a gymnotiform fish. J Comp Neurol 345:224–252PubMedGoogle Scholar
  569. Maler L, Karten HJ, Bennett MVL (1973a) The central connections of the posterior lateral line nerve of Gnathonemus petersii. J Comp Neurol 151:57–66PubMedGoogle Scholar
  570. Maler L, Karten HJ, Bennett MVL (1973b) The central connections of the anterior lateral line nerve of Gnathonemus petersii. J Comp Neurol 151:67–84PubMedGoogle Scholar
  571. Maler L, Finger T, Karten HJ (1974) Differential projections of ordinary lateral line receptors and electroreceptors in the gymnotid fish: Apteronotus (Sternarchus) albifrons. J Comp Neurol 158:363–382PubMedGoogle Scholar
  572. Maler L, Sas E, Rogers J (1981a) The cytology of the posterior lateral line lobe of high-frequency weakly electric fish (Gymnotidae): specificity in a simple cortex. J Comp Neurol 195:87–139PubMedGoogle Scholar
  573. Maler L, Callins M, Mathieson WB (1981b) The distribution of acetylcholinesterase and choline acetyl transferase in the cerebellum and posterior lateral line lobe of weakly electric fish (Gymnotidae). Brain Res 226:320–325PubMedGoogle Scholar
  574. Maler L, Sas E, Carr CE, Matsubara J (1982) Efferent projections of the posterior lateral line lobe in gymnotiform fish. J Comp Neurol 211:154–164PubMedGoogle Scholar
  575. Maler L, Jande S, Lawson EM (1984a) Localization of vitamin D-dependent calcium binding protein in the electrosensory and electromotor system of high frequency gymnotid fish. Brain Res 301:166–170PubMedGoogle Scholar
  576. Maler L, Boland M, Patrick J, Ellis W (1984b) Localization of zinc in the pacemaker nucleus of high frequency gymnotid fish. In: Frederickson CJ, Howell GA, Kasarskis EJ (eds) The neurobiology of zinc. Liss, New York, pp 199–212Google Scholar
  577. Maler L, Le Clerc N, Hawkes R (1986) A monoclonal antibody to mammalian neurofilament protein stains somata and dendrites in gymnotid fish. Brain Res 378:337–346PubMedGoogle Scholar
  578. Maler L, Sas E, Johnston S, Ellis W (1991) An atlas of the brain of the electric fish Apteronotus leptorhynchus. J Chem Neuroanat 4:1–38PubMedGoogle Scholar
  579. Manis PB, Freeman JA (1988) Fluorescence recordings of electrical activity in goldfish optic tectum in vitro. J Neurosci 8:383–394PubMedGoogle Scholar
  580. Manso MJ, Becerra M, Molist P, Rodriguez-Moldes I, Anadón R (1993) Distribution and development of catecholaminergic neurons in the brain of the brown trout. A tyrosine hydroxylase immunohistochemical study. J Hirnforsch 34:239–260PubMedGoogle Scholar
  581. Mansour-Robaey S, Pinganaud G (1990) Quantitative and morphological study of cell proliferation during morphogenesis in the trout visual system. J Hirnforsch 31:495–504PubMedGoogle Scholar
  582. Margolis-Kazan H, Halpern-Sebold LR, Schreibman MP (1985) Immunocytochemical localization of serotonin in the brain and pituitary gland of the platyfish, Xiphophorus maculatus. Cell Tissue Res 240:311–314PubMedGoogle Scholar
  583. Marotte LR (1980) Goldfish retinotectal system: continuing development and synaptogenesis. J Comp Neurol 193:319–334PubMedGoogle Scholar
  584. Martinoli M-G, Dubourg P, Geffard M, Calas A, Kah O (1990) Distribution of GABA-immunoreactive neurons in the forebrain of the goldfish Carassius auratus. Cell Tissue Res 260:77–84PubMedGoogle Scholar
  585. Marui T (1977) Taste responses in the facial lobe of the carp, Cyprinus carpio L. Brain Res 130:287–298PubMedGoogle Scholar
  586. Marui T, Caprio J (1982) Electrophysiological evidence for the topographical arrangement of taste and tactile neurons in the facial lobe of the channel catfish. Brain Res 231:185–190PubMedGoogle Scholar
  587. Marui T, Caprio J (1992) Teleost gustation. In: Hara TJ (ed) Fish chemoreception. Chapman and Hall, London, pp 171–198Google Scholar
  588. Marui T, Funakoshi M (1979) Tactile input to the facial lobe of the carp, Cyprinus carpio L. Brain Res 177:479–488PubMedGoogle Scholar
  589. Marui T, Caprio J, Kiyohara S, Kasahara Y (1988) Topographical organization of taste and tactile neurons in the facial lobe of the sea catfish, Plotosus lineatus. Brain Res 446:178–182PubMedGoogle Scholar
  590. Mathieson WB, Heiligenberg W, Maler L (1987) Ultrastructural studies of physiologically identified electrosensory afferent synapses in the gymnotiform fish: Eigenmannia. J Comp Neurol 255:526–537PubMedGoogle Scholar
  591. Matsumoto N, Kiyama H, Bando T (1983) An intracellular study of the optic tectum of the carp in vitro. Neurosci Lett 38:17–22PubMedGoogle Scholar
  592. Matsumoto N, Kometani M, Nagano K (1987) Regenerating retinal fibers of the goldfish make temporary and unspecific but functional synapses before forming the final retinotopic map. Neuroscience 22:1102–1110Google Scholar
  593. Matsutani S, Uchiyama H, Ito H (1986) Cytoarchitecture, synaptic organization and fiber connections of the nucleus olfactoretinalis in a teleost Navodon modestus. Brain Res 373:126–138PubMedGoogle Scholar
  594. Mazzi V, Franzoni MF, Fasolo A (1978) A golgi study of the hypothalamus of actinopterygii. I. The preoptic area. Cell Tissue Res 186:475–490PubMedGoogle Scholar
  595. McCormick CA (1981) Central projections of the lateral line and eighth nerves in the bowfin, Amia calva. J Comp Neurol 197:1–15PubMedGoogle Scholar
  596. McCormick CA (1982) The organization of the octavolateralis area in actinopterygian fishes: a new interpretation. J Morphol 171:159–181Google Scholar
  597. McCormick CA (1983) Central connections of the octavolateralis nerves in the pike cichlid, Crenicichla lepidota. Brain Res 263:177–185Google Scholar
  598. McCormick CA (1989) Central lateral line mechanosensory pathways in bony fish. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, Berlin Heidelberg New York, pp 341–364Google Scholar
  599. McCormick CA (1992) Evolution of central auditory pathways in anamniotes. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, Berlin Heidelberg New York, pp 323–350Google Scholar
  600. McCormick CA, Braford MR Jr (1988) Central connections of the octavolateralis system: evolutionary considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, Berlin Heidelberg New York, pp 733–756Google Scholar
  601. McCormick CA, Braford MR Jr (1993) The primary octaval nuclei and inner ear afferent projections in the otophysan Ictalurus punctatus. Brain Behav Evol 42:48–68PubMedGoogle Scholar
  602. McCormick CA, Braford MR Jr (1994) Organization of inner ear endorgan projections in the goldfish, Carassius auratus. Brain Behav Evol 43:189–205PubMedGoogle Scholar
  603. McCreery DB (1977a) Two types of electroreceptive lateral lemniscal neurons of the lateral line lobe of the catfish Ictalurus nebulosus; connections from the lateral line nerve and steady state frequency response characteristics. J Comp Physiol 113:317–339Google Scholar
  604. McCreery DB (1977b) Special organization of receptive fields of lateral lemniscus neurons of the lateral line lobe of the catfish Ictalurus nebulosus. J Comp Physiol 113:341–353Google Scholar
  605. Medina M, le Belle N, Repérant J, Rio J-P, Ward R (1990) An experimental study of the retinal projections of the European eel (Anguilla anguilla) carried out at the catadromic migratory silver stage. J Hirnforsch 31:467–480PubMedGoogle Scholar
  606. Medina M, Repérant J, Ward R, Rio J-P, Lemire M (1993) The primary visual system of flatfish: an evolutionary perspective. Anat Embryol (Berl) 187:167–191Google Scholar
  607. Meek J (1978) Myelin-impregnation: an improved Golgi-Cox modification. Stain Technol 53:131–135PubMedGoogle Scholar
  608. Meek J (1981a) A Golgi-electron microscopic study of goldfish optic tectum. I. Description of afferents, cell types and synapses. J Comp Neurol 199:149–173PubMedGoogle Scholar
  609. Meek J (1981b) A Golgi-electronmicroscopic study of goldfish optic tectum. II. Quantitative aspects of synaptic organization. J Comp Neurol 199:175–190PubMedGoogle Scholar
  610. Meek J (1983) Functional anatomy of the tectum mesencephali of the goldfish. An explorative analysis of the functional implications of the laminar structural organization of the tectum. Brain Res Rev 6:247–297Google Scholar
  611. Meek J (1990) Tectal morphology: connections, neurons and synapses. In: Douglas RH, Djamgoz MBA (eds) The visual system of fish. Chapman and Hall, London, pp 239–277Google Scholar
  612. Meek J (1992a) Why run parallel fibers parallel? Teleostean Purkinje cells as possible coincidence detectors in a timing device subserving spatial coding of temporal differences. Neuroscience 48:249–283PubMedGoogle Scholar
  613. Meek J (1992b) Comparative aspects of cerebellar organization. From mormyrids to mammals. Eur J Morphol 30:37–51PubMedGoogle Scholar
  614. Meek J (1993) Structural organization of the mormyrid electrosensory lateral line lobe. J Comp Physiol [A] 173:675–677Google Scholar
  615. Meek J (1994a) Catecholamines in the brains of Osteichthyes (bony fishes). In: Smeets WJAJ, Reiner A (eds) Phylogeny and development of catecholamine systems in the CNS of vertebrates. Cambridge University Press, Cambridge, pp 49–76Google Scholar
  616. Meek J (1994b) Microcircuitry of the mormyrid electrosensory lateral line lobe. Eur J Morphol 32:279–282PubMedGoogle Scholar
  617. Meek J, Grant K (1994) The role of motor command feedback in electrosensory processing. Eur J Morphol 32:225–234PubMedGoogle Scholar
  618. Meek J, Joosten HWJ (1989) The distribution of serotonin in the brain of the mormyrid teleost Gnathonemus petersii. J Comp Neurol 281:206–224PubMedGoogle Scholar
  619. Meek J, Joosten HWJ (1993) Tyrosine hydroxylaseimmunoreactive cell groups in the brain of the teleost fish Gnathonemus petersii. J Chem Neuroanat 6:431–446PubMedGoogle Scholar
  620. Meek J, Nieuwenhuys R (1991) Palisade pattern of mormyrid Purkinje cells. A correlated light and electron microscopic study. J Comp Neurol 306:156–192PubMedGoogle Scholar
  621. Meek J, Schellart NAM (1978) A Golgi study of goldfish optic tectum. J Comp Neurol 182:89–122PubMedGoogle Scholar
  622. Meek J, Nieuwenhuys R, Elsevier D (1986a) Afferent and efferent connections of the cerebellar lobe C1 of the mormyrid fish Gnathonemus petersii: an HRP study. J Comp Neurol 245:319–341PubMedGoogle Scholar
  623. Meek J, Nieuwenhuys R, Elsevier D (1986b) Afferent and efferent connections of cerebellar lobe C3 of the mormyrid fish Gnathonemus petersii: an HRP study. J Comp Neurol 245:342–358PubMedGoogle Scholar
  624. Meek J, Joosten HWJ, Steinbusch HWM (1989) The distribution of dopamine-immunoreactivity in the brain of the mormyrid teleost Gnathonemus petersii. J Comp Neurol 281:362–383PubMedGoogle Scholar
  625. Meek J, Hafmans TGM, Maler L, Hawkes R (1992) The distribution of zebrin II in the gigantocerebellum of the mormyrid fish Gnathonemus petersii compared with other teleosts. J Comp Neurol 316:17–31PubMedGoogle Scholar
  626. Meek J, Joosten HWJ, Hafmans TGM (1993) Distribution of noradrenaline-immunoreactivity in the brain of the mormyrid teleost Gnathonemus petersii. J Comp Neurol 328:145–160PubMedGoogle Scholar
  627. Meijer NW (1975) Cranial motor nerves innervating superficial respiratory muscles in carp (Cyprinus carpio L). Nether J Zool 25:103–113Google Scholar
  628. Mendelson B (1986a) Development of reticulospinal neurons of the zebrafish. I. Time of origin. J Comp Neurol 251:160–171PubMedGoogle Scholar
  629. Mendelson B (1986b) Development of reticulospinal neurons of the zebrafish. II. Early axonal outgrowth and cell body position. J Comp Neurol 251:172–184PubMedGoogle Scholar
  630. Meredith GE (1984) Peripheral configuration and central projections of the lateral line system in Astronotus ocellatus (Cichlidae): a nonelectroreceptive teleost. J Comp Neurol 288:342–358Google Scholar
  631. Meredith GE (1985) The distinctive central utricular projections in the herring. Neurosci Lett 55:191–196PubMedGoogle Scholar
  632. Meredith GE (1988) Comparative view of the central organization of afferent and efferent circuitry for the inner ear. Acta Biol Hung 39:229–249PubMedGoogle Scholar
  633. Meredith GE, Butler AB (1983) Organization of eight nerve afferent projections from individual end organs of the inner ear in the teleost, Astronotus ocellatus. J Comp Neurol 220:44–62PubMedGoogle Scholar
  634. Meredith GE, Roberts BL (1986) The relationship of saccular efferent neurons to the superior olive in the eel, Anguilla anguilla. Neurosci Lett 68:69–72PubMedGoogle Scholar
  635. Meredith GE, Roberts BL (1987) Distribution and morphological characteristics of efferent neurons innervating end organs in the ear and lateral line of the European eel. J Comp Neurol 265:494–506PubMedGoogle Scholar
  636. Meredith GE, Roberts BL, Maslam S (1987) Distribution of afferent fibers in the brainstem from end organs in the ear and lateral line in the European eel. J Comp Neurol 265:507–520PubMedGoogle Scholar
  637. Meszler RM, Pappas GD, Bennett MVL (1974) Morphology of the electromotor system in the spinal cord of the electric eel, Electrophorus electricus. J Neurocytol 3:251–261PubMedGoogle Scholar
  638. Metcalfe WK, Kimmel CB, Schabtach E (1985) Anatomy of the posterior lateral line system in young larvae of the zebrafish. J Comp Neurol 233:377–389PubMedGoogle Scholar
  639. Metcalfe WK, Mendelson B, Kimmel CB (1986) Segmental homologies among reticulospinal neurons in the hindbrain of the zebrafish larva. J Comp Neurol 251:147–159PubMedGoogle Scholar
  640. Metzner W (1993) The jamming avoidance response in Eigenmannia is controlled by two separate motor pathways. J Neurosci 13:1862–1878PubMedGoogle Scholar
  641. Metzner W, Heiligenberg W (1991) The coding of signals in the electric communication of the gymnotiform fish Eigenmannia: from electroreceptors to neurons in the torus semicircularis of the midbrain. J Comp Physiol [A] 169:135–150Google Scholar
  642. Meyer DL (1980) Mapping the normal and regenerating retinotectal projection of goldfish with autoradiographic methods. J Comp Neurol 189:273–289PubMedGoogle Scholar
  643. Meyer DL, Brink DL (1988) Locally correlated activity in the goldfish tectum in the absence of optic innervation. Dev Brain Res 41:25–36Google Scholar
  644. Meyer DL, Ebbesson SOE (1981) Retinofugal and retinopetal connections in the upside-down catfish (Synodontis nigriventris). Cell Tissue Res 218:389–401PubMedGoogle Scholar
  645. Meyer DL, Fiebig E, Ebbesson SOE (1981) A note on the reciprocal connections between the retina and the brain in the puffer fish Tetraodon fluviatilis. Neurosci Lett 23:111–115PubMedGoogle Scholar
  646. Meyer DL, Lara J, Malz CR, Graf W (1993) Diencephalic projections to the retinae in two species of flatfishes (Scophthalmus maximus and Pleuronectes platessa). Brain Res 601:308–312PubMedGoogle Scholar
  647. Meyer JH (1984) Steroid influences upon the discharge frequencies of intact and isolated pacemakers of weakly electric fish. J Comp Physiol 154:659–668Google Scholar
  648. Meyer JH, Bell CC (1983) Sensory gating by a corollary discharge mechanism. J Comp Physiol 151:401–406Google Scholar
  649. Meyer W (1974) Untersuchungen zur Struktur und Histochemie der Rohon-Beard Zellen bei Fischen und Amphibien. Thesis, University of HannoverGoogle Scholar
  650. Meyer W (1977) Some observations on the Rohon-Beard cell perikaryon. Experientia 33:319–321PubMedGoogle Scholar
  651. Miguel Hidalgo JJ, Lara J, Alonso JR, Argon J (1986a) Structural organization of the optic tectum of Barbus meridionalis Risso. I. Inner strata (SPV, SAC and SPV). J Hirnforsch 27:19–27Google Scholar
  652. Miguel Hidalgo JJ, Lara J, Alonso JR, Argon J (1986b) Structural organization of the optic tectum of Barbus meridionalis Risso. II. Outer strata (SFGS, SO and SM). J Hirnforsch 27:29–36PubMedGoogle Scholar
  653. Miguel Hidalgo JJ, Ito H, Lara J (1991) Distribution of calbindin like immunoreactive structures in the optic tectum of normal and eye-enucleated cyprinid fish. Cell Tissue Res 265:511–516Google Scholar
  654. Miller KE, Kriebel RM (1985) Electron microscopic identification of mesencephalic neurosecretory cells in teleosts. Cell Tissue Res 242:445–448Google Scholar
  655. Miller KE, Kriebel RM (1986a) Cytology of brain stem neurons projecting to the caudal neurosecretory complex: an HRP Electron microscopic study. Brain Res Bull 16:183–188PubMedGoogle Scholar
  656. Miller KE, Kriebel RM (1986b) Peptidergic innervation of caudal neurosecretory neurons. Gen Comp Endocrinol 64:396–400PubMedGoogle Scholar
  657. Mills A, Zakon HH (1987) Coordination of EOD frequency and pulse duration in a weakly electric wave fish: the influence of androgens. J Comp Physiol [A] 161:417–430Google Scholar
  658. Molist P, Maslam S, Velzing E, Roberts BL (1993) The organization of cholinergic neurons in the mesencephalon of the eel, Anguilla anguilla, as determined by choline acetyltransferase immunohistochemistry and acetylcholinesterase enzyme histochemistry. Cell Tissue Res 271:555–566Google Scholar
  659. Moller P, Szabo T (1981) Lesions in the nucleus mesencephali exterolateralis: effects in electrocommunication in the mormyrid fish Gnathonemus petersii (Mormyriformes). J Comp Physiol 144:327–333Google Scholar
  660. Moons L, Cambré M, Batten TFC, Vandesande F (1989) Autoradiographic localization of binding sites for vasotocin in the brain and pituitary of the sea bass (Dicentrarchus labrax). Neurosci Lett 100:11–16PubMedGoogle Scholar
  661. Moons L, Batten TFC, Vandesande F (1991) Autoradiographic distribution of galanin binding sites in the brain and pituitary of the sea bass (Dicentrarchus labrax). Neurosci Lett 123:49–52PubMedGoogle Scholar
  662. Moons L, Batten TFC, Vandesande F (1992) Comparative distribution of substance P (SP) and cholecystokinin (CCK) binding sites and immunoreactivity in the brain of the sea bass (Dicentrarchus labrax). Peptides 13:37–46PubMedGoogle Scholar
  663. Morgan GC Jr (1975) The telencephalon of the sea catfish Galeichthys felis. J Hirnforsch 16:131–150PubMedGoogle Scholar
  664. Morita Y, Finger TE (1985a) Reflex connections of the facial and vagal gustatory systems in the brainstem of the bullhead catfish, Ictalurus nebulosus. J Comp Neurol 231:547–558PubMedGoogle Scholar
  665. Morita Y, Finger TE (1985b) Topographic and laminar organization of the vagal gustatory system in the goldfish, Carassius auratus. J Comp Neurol 238:187–201PubMedGoogle Scholar
  666. Morita Y, Finger TE (1987a) Area postrema of the goldfish, Carassius auratus: ultrastructure, fiber connections, and immunocytochemistry. J Comp Neurol 256:104–116PubMedGoogle Scholar
  667. Morita Y, Finger TE (1987b) Topographic representation of the sensory and motor roots of the vagus nerve in the medulla of goldfish, Carassius auratus. J Comp Neurol 264:231–249PubMedGoogle Scholar
  668. Morita Y, Ito H, Masai H (1980) Central gustatory paths in the crucian carp, Carassius carassius. J Comp Neurol 191:119–132PubMedGoogle Scholar
  669. Morita Y, Murakami T, Ito H (1983) Cytoarchitecture and topographic projections of the gustatory centers in a teleost, Carassius carassius. J Comp Neurol 218:378–394PubMedGoogle Scholar
  670. Mugnaini E, Maler L (1987a) Cytology and immunocytochemistry of the nucleus of the lateral line lobe in the electric fish Gnathonemus petersii (Mormyridae): evidence suggesting that GABAergic synapses mediate an inhibitory corollary discharge. Synapse 1:32–56PubMedGoogle Scholar
  671. Mugnaini E, Maler L (1987b) Cytology and immunocytochemistry of the nucleus extrolateralis anterior of the mormyrid brain: possible role of GABAergic synapses in temporal analysis. Anat Embryol (Berl) 176:313–336Google Scholar
  672. Münz H, Claas B (1981) Centrifugal innervation of the retina in cichlid and poecilid fishes. A horseradish peroxidase study. Neurosci Lett 22:223–226Google Scholar
  673. Münz H, Stumpf WE, Jennes L (1981) LHRH systems in the brain of platyfish. Brain Res 221:1–13PubMedGoogle Scholar
  674. Münz H, Claas B, Stumpf WE, Jennes L (1982) Centrifugal innervation of the retina by luteinizing hormone releasing hormone (LHRH)-immunoreactive telencephalic neurons in teleostean fishes. Cell Tissue Res 222:313–323PubMedGoogle Scholar
  675. Murakami T, Ito H (1985) Long ascending projections of the spinal dorsal horn in a teleost, Sebastiscus marmoratus. Brain Res 346:168–170PubMedGoogle Scholar
  676. Murakami T, Morita Y (1987) Morphology and distribution of the projection neurons in the cerebellum in a teleost: Sebastiscus marmoratus. J Comp Neurol 256:607–623PubMedGoogle Scholar
  677. Murakami T, Morita Y, Ito H (1983) Extrinsic and intrinsic fiber connections of the telencephalon in a teleost, Sebastiscus marmoratus. J Comp Neurol 216:115–131PubMedGoogle Scholar
  678. Murakami T, Fukuoka T, Ito H (1986a) Telencephalic ascending acousticolateral system in a teleost (Sebastiscus marmoratus), with special reference to the fiber connections of the nucleus preglomerulosus. J Comp Neurol 247:383–397PubMedGoogle Scholar
  679. Murakami T, Morita Y, Ito H (1986b) Cytoarchitecture and fiber connections of the superficial pretectum in a teleost, Navodon modestus. Brain Res 373:213–221PubMedGoogle Scholar
  680. Murakami T, Ito H, Morita Y (1986c) Telencephalic afferent nuclei in the carp diencephalon, with special reference to fiber connections of the nucleus preglomerulosus pars lateralis. Brain Res 382:97–103PubMedGoogle Scholar
  681. Murray M, Edwards MA (1982) A quantitative study of the reinnervation of the goldfish optic tectum following optic nerve crush. J Comp Neurol 209:363–373PubMedGoogle Scholar
  682. Muske LE (1993) Evolution of gonadotropin-releasing hormone (GnRH) neuronal systems. Brain Behav Evol 42:215–230PubMedGoogle Scholar
  683. Myers PZ (1985) Spinal motoneurons of the larval zebrafish. J Comp Neurol 236:555–561PubMedGoogle Scholar
  684. Myers PZ, Eisen JS, Westerfield M (1986) Development and axonal outgrowth of identified motoneurons in the zebra-fish. J Neurosci 6:2278–2289PubMedGoogle Scholar
  685. Nadi S, Maler L (1987) The laminar distribution of amino acids in the caudal cerebellum and electrosensory lateral line lobe of weakly electric fish (Gymnotidae). Brain Res 425:218–224PubMedGoogle Scholar
  686. Nagatsu I, Karasawa N, Kawakami Y, Yoohida M (1984) Studies on monoamine-containing neurons by immunoenzyme-histocytochemistry and immunohistocytochemistry with special reference to goldfish brain. Acta Histochem Cytochem 17:151–160Google Scholar
  687. Nakajima Y (1974) Fine structure of the synaptic endings in the Mauthner cell of the goldfish. J Comp Neurol 156:375–402Google Scholar
  688. Nakajima Y, Kohno K (1978) Fine structure of the Mauthner cell synaptic topography and comparative study. In: Faber DS, Korn H (eds) Neurobiology of the Mauthner cell. Raven, New York, pp 133–166Google Scholar
  689. Nederstigt LJA, Schellart NAM (1986) Acousticolateral processing in the torus semicircularis of the trout Salmo gairdneri. Pflugers Arch 406:151–157PubMedGoogle Scholar
  690. Nelson GJ (1969) Origin and diversification of teleostean fishes. Ann NY Acad Sci 167:18–30Google Scholar
  691. Nelson JS (1984) Fishes of the world. Wiley, New YorkGoogle Scholar
  692. New JG, Singh S (1994) Central topography of anterior lateral line nerve projections in the Channel catfish, Ictalurus punctatus. Brain Behav Evol 43:34–50PubMedGoogle Scholar
  693. Nieuwenhuys R (1962) Trends in the evolution of actinopterygian fishes. J Morphol 111:69–88PubMedGoogle Scholar
  694. Nieuwenhuys R (1963) The comparative anatomy of the actinopterygian forebrain. J Hirnforsch 6:171–200Google Scholar
  695. Nieuwenhuys R (1964) Comparative anatomy of the spinal cord. Prog Brain Res 11:1–57PubMedGoogle Scholar
  696. Nieuwenhuys R (1967a) Comparative anatomy of olfactory centers and tracts. Prog Brain Res 23:1–64PubMedGoogle Scholar
  697. Nieuwenhuys R (1967b) Comparative anatomy of the cerebellum. Prog Brain Res 25:1–93PubMedGoogle Scholar
  698. Nieuwenhuys R (1974) Topological analysis of the brain stem: a general introduction. J Comp Neurol 156:255–276PubMedGoogle Scholar
  699. Nieuwenhuys R (1982) An overview of the organization of the brain of actinopterygian fishes. Am Zool 22:287–310Google Scholar
  700. Nieuwenhuys R, Bodenheimer TS (1966) The diencephalon of the primitive bony fish Polypterus in the light of the problem of homology. J Morphol 118:415–450PubMedGoogle Scholar
  701. Nieuwenhuys R, Meek J (1985) Constructional principles of the brain stem in amniotes, with emphasis on actinopterygian fishes. Fortschr Zool 30:515–528Google Scholar
  702. Nieuwenhuys R, Meek J (1990) The telencephalon of actinopterygian fishes. In: Jones EG, Peters A (eds) Comparative structure and evolution of cerebral cortex, part I. Plenum, New York, pp 31–73 (Cerebral cortex, vol 8A)Google Scholar
  703. Nieuwenhuys R, Nicholson C (1967) The cerebellum of mormyrids. Nature 215:764–765PubMedGoogle Scholar
  704. Nieuwenhuys R, Nicholson C (1969a) A survey of the general morphology, the fiber connections, and the possible functional significance of the gigantocerebellum of mormyrid fishes. In: Llinás R (ed) Neurobiology of cerebellar evolution and development. Am Med Ass Educ Res Found, Chicago, pp 107–134Google Scholar
  705. Nieuwenhuys R, Nicholson C (1969b) Aspects of the histology of the cerebellum of mormyrid fishes. In: Llinás R (ed) Neurobiology of cerebellar evolution and development. Am Med Ass Educ Res Found, Chicago, pp 135–169Google Scholar
  706. Nieuwenhuys R, Pouwels E (1983) The brain stem of actinopterygian fishes. In: Northcutt RG, Davis RE (eds) Fish neurobiology. 1. Brain stem and sense organs. University of Michigan Press, Ann Arbor, pp 25–87Google Scholar
  707. Nieuwenhuys R, Verrijdt PWY (1983) Structure and connections of the telencephalon of the teleost fish Xenomystis nigri. II. The area dorsalis. Acta Morphol Neerl Scand 21:330Google Scholar
  708. Nieuwenhuys R, Pouwels E, Smulders-Kersten E (1974) The neuronal organization of cerebellar lobe C1 in the mormyrid fish Gnathonemus petersii (Teleostei). Z Anat Entwickl Gesch 144:315–336Google Scholar
  709. Niida A, Ohno T (1984) An extensive projection of fish dorsolateral tegmental cells to the optic tectum revealed by intra-axonal dye marking. Neurosci Lett 48:261–266PubMedGoogle Scholar
  710. Niida A, Oka H, Iwata KS (1980) Visual responses of morphologically identified tectal neurons in the crucian carp. Brain Res 201:361–371PubMedGoogle Scholar
  711. Niida A, Ohno T, Iwata KS (1989) Efferent tectal cells of crucian carp: physiology and morphology. Brain Res Bull 22:389–398PubMedGoogle Scholar
  712. Nilsson S (1980) Sympathetic nervous control of the iris sphincter of the atlantic cod, Gadus morhua. J Comp Physiol 138:149–155Google Scholar
  713. Nissanov J, Eaton RC, DiDomenico R (1990) The motor output of the Mauthner cell, a reticulospinal command neuron. Brain Res 517:88–98PubMedGoogle Scholar
  714. Noe BD, Milgram SL, Balasubramaniam A, Andrews PC, Calka J, McDonald JK (1989) Localization and characterization of neuropeptide Y-like peptides in the brain and islet organ of the anglerfish (Lophius americanus). Cell Tissue Res 257:303–311PubMedGoogle Scholar
  715. Northcutt RG (1982) Localization of neurons afferent to the optic tectum in longnose gars. J Comp Neurol 204:325–335PubMedGoogle Scholar
  716. Northcutt RG (1983a) Evolution of the optic tectum in rayfinned fishes. In: Davis RE, Northcutt RG (eds) Fish neurobiology. 2. Higher brain areas and functions. Univ of Michigan Press, Ann Arbor, pp 1–42Google Scholar
  717. Northcutt RG (1983b) Brain stem neurons that project to the spinal cord in garpike (Holostei). Anat Rec 205:144AGoogle Scholar
  718. Northcutt RG, Braford MR Jr (1980) New observations on the organization and evolution of the telencephalon of actinopterygian fishes. In: Ebbesson SOE (ed) Comparative neurology of the telencephalon. Plenum, New York, pp 41–98Google Scholar
  719. Northcutt RG, Braford MR Jr (1984) Some efferent connections of the superficial pretectum in the goldfish. Brain Res 296:181–184PubMedGoogle Scholar
  720. Northcutt RG, Butler AB (1976) Retinofugal pathways in the longnose gar Lepisosteus osseus (Linnaeus). J Comp Neurol 166:1–16PubMedGoogle Scholar
  721. Northcutt RG, Butler AB (1980) Projections of the optic tectum in the longnose gar, Lepisosteus osseus. Brain Res 190:333–346PubMedGoogle Scholar
  722. Northcutt RG, Butler AB (1991) Retinofugal and retinopetal projections in the green sunfish, Lepomis cyanellus. Brain Behav Evol 37:333–354PubMedGoogle Scholar
  723. Northcutt RG, Butler AB (1993a) The diencephalon and optic tectum of the longnose gar, Lepisosteus osseus (L.): cytoarchitectonics and distribution of acetylcholinesterase. Brain Behav Evol 41:57–81PubMedGoogle Scholar
  724. Northcutt RG, Butler AB (1993b) The diencephalon of the pacific herring, Clupea harengus: retinofugal projections to the diencephalon and optic tectum. J Comp Neurol 328:547–561PubMedGoogle Scholar
  725. Northcutt RG, Davis RE (1983) Telencephalic organization in ray-finned fishes. In: Davis RE, Northcutt RG (eds) Fish neurobiology. 2. Higher brain areas and functions. University of Michigan Press, Ann Arbor, pp 203–236Google Scholar
  726. Northcutt RG, Wullimann MF (1988) The visual system in teleost fishes: morphological patterns and trends. In: Atema J, Fay RR, Poppema AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, Berlin Heidelberg New York, pp 515–552Google Scholar
  727. Northmore DPM (1984) Visual and saccadic activity in the goldfish torus longitudinalis. J Comp Physiol [A] 155:333–340Google Scholar
  728. Northmore DPM (1989a) Quantitative electrophysiological studies of regenerating visuotopic maps in goldfish. I. Early recovery of dimming sensitivity in tectum and torus semicircularis. Neuroscience 32:739–747PubMedGoogle Scholar
  729. Northmore DPM (1989b) Quantitative electrophysiological studies of regenerating visuotopic maps in goldfish. II. Delayed recovery of sensitivity to small light flashes. Neuroscience 32:749–757PubMedGoogle Scholar
  730. Northmore DPM (1991) Visual responses of nucleus isthmi in a teleost fish (Lepomis macrochirus). Vis Res 31:525–535PubMedGoogle Scholar
  731. Northmore DPM, Williams B, Vanegas H (1983) The teleostean torus longitudinalis: responses related to eye movements; visuotopic mapping, and functional relations with the optic tectum. J Comp Physiol [A] 150:39–50Google Scholar
  732. O’Brien JP, Kriebel RM (1982) Brain stem innervation of the caudal neurosecretory system. Cell Tissue Res 227:153–160PubMedGoogle Scholar
  733. Oka S, Chiba A, Honma Y, Iwanaga T, Fujita T (1993) Development of the caudal neurosecretory system of the chum salmon, Oncorhynchus keta, as revealed by immunohistochemistry for urotensins I and II. Cell Tissue Res 272:221–226Google Scholar
  734. Oka Y (1980) The origin of the centrifugal fibers to the olfactory bulb in the goldfish, Carassius auratus: an experimental study using the fluorescent dye primuline as a retrograde tracer. Brain Res 185:215–225PubMedGoogle Scholar
  735. Oka Y (1983) Golgi, electron microscopic and combined Golgi-electron microscopic studies of the mitral cells in the goldfish olfactory bulb. Neuroscience 8:723–742PubMedGoogle Scholar
  736. Oka Y (1992) Gonadotropin-releasing hormone (GnRH) cells of the terminal nerve as a model neuromodulator system. Neurosci Lett 142:119–122PubMedGoogle Scholar
  737. Oka Y, Ichikawa M (1990) Gonadotropin-releasing hormone (GnRH) immunoreactive system in the brain of the dwarf gourami (Colisa lalia) as revealed by light microscopic immunocytochemistry using a monoclonal antibody to common amino acid sequence of GnRH. J Comp Neurol 300:511–522PubMedGoogle Scholar
  738. Oka Y, Ichikawa M (1991) Ultrastructure of the ganglion cells of the terminal nerve in the dwarf gourami (Colisa lalia). J Comp Neurol 304:161–171PubMedGoogle Scholar
  739. Oka Y, Ichikawa M (1992) Ultrastructural characterization of gonadotropin-releasing hormone (GnRH)-immunoreactive terminal nerve cells in the dwarf gourami. Neurosci Lett 140:200–202PubMedGoogle Scholar
  740. Oka Y, Matsushima T (1993) Gonadotropin-releasing hormone (GnRH)-immunoreactive terminal nerve cells have intrinsic rhythmicity and project widely in the brain. J Neurosci 13:2161–2176PubMedGoogle Scholar
  741. Oka Y, Ueda K (1981) Telencephalic afferents in the goldfish: an anterograde degeneration study. Brain Res Bull 7:391–394PubMedGoogle Scholar
  742. Oka Y, Ichikawa M, Ueda K (1982) Synaptic organization of the olfactory bulb and central projection of the olfactory tract. In: Hara TJ (ed) Chemoreception in fishes. Elsevier, Amsterdam, pp 61–75Google Scholar
  743. Oka Y, Satou M, Ueda K (1986a) Descending pathways to the spinal cord in the himé salmon (landlocked red salmon, Oncorhynchus nerka). J Comp Neurol 254:91–103PubMedGoogle Scholar
  744. Oka Y, Satou M, Ueda K (1986b) Ascending pathways from the spinal cord in the himé salmon (landlocked red salmon, Oncorhynchus nerka). J Comp Neurol 254:104–112PubMedGoogle Scholar
  745. Oka Y, Munro AD, Lam TJ (1986c) Retinopetal projections from a subpopulation of ganglion cells of the nervus terminalis in the dwarf gourami (Colisa lalia). Brain Res 367:341–345PubMedGoogle Scholar
  746. Okawara Y, Ko D, Morley SD, Richter D, Lederis KP (1992) In situ hybridization of corticotropin-releasing factorencoding messenger RNA in the hypothalamus of the white sucker, Catostomus commersoni. Cell Tissue Res 267:545–549PubMedGoogle Scholar
  747. Oksche A (1969) The subcommissural organ. J Neurol Visc Relat [Suppl] 9:111–139Google Scholar
  748. Olivereau M, Olivereau J (1988) Localization of CRF-like immunoreactivity in the brain and pituitary of teleost fish. Peptides 9:13–21PubMedGoogle Scholar
  749. Olivereau M, Olivereau J (1989) Quantitative changes of CRF-like immunoreactivity in eels treated with reserpine and cortisol. Peptides 9:1261–1267Google Scholar
  750. Olivereau M, Olivereau J (1990) Corticotropin-like immunoreactivity in the brain and pituitary of three teleost species (goldfish, trout and eel). Cell Tissue Res 262:115–123PubMedGoogle Scholar
  751. Olivereau M, Olivereau J (1991) Immunocytochemical localization of a galanin-like peptidergic system in the brain and pituitary of some teleost fish. Histochemistry 96:343–354PubMedGoogle Scholar
  752. Olivereau M, Ollevier F, Vandesande F, Verdonck W (1984a) Immunocytochemical identification of CRF-like and SRIF-like peptides in the brain and pituitary of cyprinid fish. Cell Tissue Res 237:379–382PubMedGoogle Scholar
  753. Olivereau M, Ollevier F, Vandesande F, Olivereau J (1984b) Somatostatin in the brain and the pituitary of some teleosts. Immunocytochemical identification and the effect of starvation. Cell Tissue Res 238:289–296PubMedGoogle Scholar
  754. Olivereau M, Moons L, Olivereau J, Vandesande F (1988) Coexistence of corticotropin-releasing factor-like immunoreactivity and vasotocin in perikarya of the preoptic nucleus in the eel. Gen Comp Endocrinol 70:41–48PubMedGoogle Scholar
  755. Olivereau M, Olivereau J, Vandesande F (1990) Localization of growth-hormone-releasing factor-like immunoreactivity in the hypothalamo-hypophysial system of some teleost species. Cell Tissue Res 259:73–80PubMedGoogle Scholar
  756. Onishi K (1987) Proposed tertiary olfactory pathways in teleost, Carassius auratus. Zool Sci (Japan) 4:427–431Google Scholar
  757. Onstott D, Eide R (1986a) Coexistence of urotensin I, corticotropin releasing factor and urotensin II immunoreactive cells in the caudal neurosecretory system of a teleost and an elasmobranch fish. Gen Comp Endocrinol 63:295–300PubMedGoogle Scholar
  758. Onstott D, Elde R (1986b) Immunohistochemical localization of urotensin corticotropin releasing factor, urotensin II, and serotonin immunoreactivities in the caudal spinal cord of non-teleost fish. J Comp Neurol 249:205–225PubMedGoogle Scholar
  759. Östholm T, Ekström P, Ebbesson SOE (1992) Postsmolt change in numbers of acetylcholinesterase-positive cells in the pineal organ of the Pacific coho salmon. Cell Tissue Res 270:281–286PubMedGoogle Scholar
  760. Overmier JB, Hollis KL (1983) The teleostean telencephalon in learning. In: Davis RE, Northcutt RG (eds) Fish neurobiology. 2. Higher areas and functions. University of Michigan Press, Ann Arbor, pp 265–284Google Scholar
  761. Page CH (1970) Electrophysiological study of auditory responses in the goldfish brain. J Neurophysiol 33:116–28PubMedGoogle Scholar
  762. Page CH, Sutterlin AM (1970) Visual-auditory responses in the goldfish tegmentum. J Neurophysiol 33:129–36PubMedGoogle Scholar
  763. Parent A (1983) The monoamine-containing neuronal system in the teleostean brain. In: Parent A, Northcutt RG (eds) Fish neurobiology. 2. Higher brain areas and functions. University of Michigan Press, Ann Arbor, pp 285–315Google Scholar
  764. Parent A, Northcutt RG (1982) The monoamine-containing neurons in the brain of the garfish, Lepisosteus osseus. Brain Res Bull 9:189–204PubMedGoogle Scholar
  765. Parent A, Poitras D, Dubé L (1984) Comparative anatomy of central monoaminergic systems. In: Björklund A, Hökfelt T (eds) Classical transmitters in the CNS, part I. Elsevier, Amsterdam, pp 409–439 (Handbook of chemical neuroanatomy, vol 2)Google Scholar
  766. Parent A, Dube L, Braford MR Jr, Northcutt RG (1978) The Organization of monoamine-containing neurons in the brain of the sunfish (Lepomis gibbosus) as revealed by fluorescence microscopy. J Comp Neurol 182:495–516PubMedGoogle Scholar
  767. Parkyn DC, Hawryshyn CW (1993) Polarized-light sensitivity in rainbow trout (Oncorhynchus mykiss): characterization from multi-unit responses in the optic nerve. J Comp Physiol [A] 172:493–500Google Scholar
  768. Partridge BL, Heiligenberg W, Matusbara J (1981) The neural basis of a sensory filter in the jamming avoidance response: no grandmother cells in sight. J Comp Physiol 145:153–168Google Scholar
  769. Pastor AM, Torres B, Delgado-García JM, Baker R (1991) Discharge characteristics of medial rectus and abducens motoneurons in the goldfish. J Neurophysiol 66:2125–2140PubMedGoogle Scholar
  770. Paul DH (1982) The cerebellum of fishes: a comparative neurophysiological and neuroanatomical review. Adv Comp Physiol Biochem 8:111–177PubMedGoogle Scholar
  771. Paxton JR, Eschmeyer WN (eds) (1995) Encyclopedia of fishes. Academic, San DiegoGoogle Scholar
  772. Peruzzo B, Rodríguez S, Dellannoy L, Hein S, Rodríguez EM, Oksche A (1987) Ultrastructural immunocytochemical study of the massa caudalis of the subcommissural organ-Reissner’s fiber complex in lamprey larvae (Geotria australis): evidence for a terminal vascular route of the secretory material. Cell Tissue Res 247:367–376Google Scholar
  773. Peter RE, Freyer JN (1983) Endocrine functions of the hypothalamus of actinopterygians. In: Davis RE, Northcutt RG (eds) Fish neurobiology. 2. Higher brain areas and functions. University of Michigan Press, Ann Arbor, pp 165–201Google Scholar
  774. Peter RE, Gill VE (1975) A stereotaxic atlas and technique for forebrain nuclei of the goldfish, Carassius auratus. J Comp Neurol 159:69–102PubMedGoogle Scholar
  775. Peters RC, van Steenderen GW, Kotrschal K (1987) A chemoreceptive function for the anterior dorsal fin in rocklings (Gaidropsarus and Ciliata: Teleostei: Gadidae): Electrophysiological evidence. J Mar Biol Ass UK 67:819–823Google Scholar
  776. Peyrichoux J, Pierre J, Repérant J, Rio JP (1986) Fine structure of the optic fiber termination layer in the tectum of the teleost Rutilus: a stereological and morphometric study. J Comp Neurol 246:364–381PubMedGoogle Scholar
  777. Peyrichoux J, Pierre J, Repérant J, Rio JP, Ward P (1988) A longitudinal study of the effects of retinal ablation on the organization of the retinal target lamina of the optic tectum in the teleost, Rutilus rutilus. Brain Res 447:299–313PubMedGoogle Scholar
  778. Phan M, Maler L (1983) Distribution of muscarinic receptors in the caudal cerebellum and electrosensory lateral line lobe of gymnotiform fish. Neurosci Lett 42:137–143PubMedGoogle Scholar
  779. Pickavana LC, Staines WA, Fryer JN (1992) Distribution and colocalization of neuropeptide Y and somatostatin in the goldfish brain. J Chem Neuroanat 5:221–233Google Scholar
  780. Pinganaud G, Clairambault P (1979) The visual system of the trout Salmo irideus Gibb. A degeneration and radioautographic study. J Hirnforsch 20:413–431PubMedGoogle Scholar
  781. Piñuela C, Baatrup E, Geneser TA (1992a) Histochemical distribution of zinc in the brain of the rainbow trout, Oncorhynchus mykiss. I. The telencephalon. Anat Embryol (Berl) 185:379–388Google Scholar
  782. Piñuela C, Baatrup E, Geneser TA (1992b) Histochemical distribution of zinc in the brain of the rainbow trout, Oncorhynchus mykiss. II. The diencephalon. Anat Embryol (Berl) 186:275–284Google Scholar
  783. Platel R, Ridet J-M, Bauchot R, Diagne M (1977) L’organisation encéphalique chez Amia, Lepisosteus et Polypterus. Morphologie et analyse quantitative comparées. J Hirnforsch 18:69–73PubMedGoogle Scholar
  784. Platt C (1983) The peripheral vestibular system in fishes. In: Northcutt RG, Davis RE (eds) Fish neurobiology, vol 1. University of Michigan Press, Ann Arbor, pp 89–124Google Scholar
  785. Platt C, Popper AN, Fay RR (1989) The ear as part of the octavolateralis system. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 633–651Google Scholar
  786. Polenov AL, Belenky MA, Kornienko GG, Konstantinova MS (1984) The hypothalamo-hypophysial system of the wild carp, Cyprinus carpio. I. Structure and ultrastructure of the posterior neurohypophysis. Cell Tissue Res 237:139–147PubMedGoogle Scholar
  787. Poli A, Villani L, Migani P, Monarini A, Contestabile A (1984) Evidence for a neurotransmitter role of aspartate and/or glutamate in the projection from the torus longitudinalis to the optic tectum of the goldfish. Neuroscience 12:1157–1165PubMedGoogle Scholar
  788. Pontet A, Danger JM, Dubourg P, Pelletier G, Vaudry H, Calas A, Kah O (1989) Distribution and characterization of neuropeptide Y-like immunoreactivity in the brain and pituitary of the goldfish. Cell Tissue Res 255:529–538PubMedGoogle Scholar
  789. Popper AN (1983) Organization of the inner ear and auditory processing. In: Northcutt RG, Davis RE (eds) Fish neurobiology, vol 1. University of Michigan Press, Ann Arbor, pp 125–178Google Scholar
  790. Popper AN, Fay RR (1993) Sound detection and processing by fish: critical review and major research questions. Brain Behav Evol 41:14–38PubMedGoogle Scholar
  791. Pouwels E (1978a) On the development of the cerebellum of the trout Salmo gairdneri. I. Patterns of cell migration. Anat Embryol (Berl) 152:291–308Google Scholar
  792. Pouwels E (1978b) On the development of the cerebellum of the trout Salmo gairdneri. II. Early development. Anat Embryol (Berl) 152:309–324Google Scholar
  793. Pouwels E (1978c) On the development of the cerebellum of the trout, Salmo gairdneri. III. Development of neuronal elements. Anat Embryol (Berl) 153:37–54Google Scholar
  794. Pouwels E (1978d) On the development of the cerebellum of the trout, Salmo gairdneri. IV. Development of the pattern of connectivity. Anat Embryol (Berl) 153:55–65Google Scholar
  795. Pouwels E (1978e) On the development of the cerebellum of the trout, Salmo gairdneri. V. Neuroglial cells and their development. Anat Embryol (Berl) 153:67–83Google Scholar
  796. Prasada Rao PD, Finger TE (1984) Asymmetry of the olfactory system in the brain of the winter flounder, Pseudo-pleuronectes americanus. J Comp Neurol 225:492–510PubMedGoogle Scholar
  797. Prasada Rao PD, Kulkarni AP (1991) Retinopetal neuronal systems in the brain of an air-breathing teleost fish: Channa punctata. Cell Tissue Res 263:385–394Google Scholar
  798. Prasada Rao PD, Sharma SC (1982) Retinofugal pathways in juvenile and adult channel catfish, Ictalurus (ameiurus) punctatus: an HRP and autoradiographic study. J Comp Neurol 210:37–48PubMedGoogle Scholar
  799. Prasada Rao PD, Jadhao AG, Sharma SC (1987) Descending projection neurons to the spinal cord of the goldfish. J Comp Neurol 265:96–108PubMedGoogle Scholar
  800. Prasada Rao PD, Jadhao AG, Sharma SC (1993a) Topographic organization of descending projection neurons to the spinal cord of the goldfish, Carassius auratus. Brain Res 620:211–220Google Scholar
  801. Prasada Rao PD, Job TC, Schreibman MP (1993b) Hypophysiotropic Neurons in the hypothalamus of the catfish Clarias batrachus: a cobaltous lysine and HRP study. Brain Behav Evol 42:24–38Google Scholar
  802. Presson JC, Fernald RD (1986) Development of the optic tract in the cichlid fish Haplochromis burtoni. Dev Brain Res 26:179–186Google Scholar
  803. Pritz-Hohmeier S, Hanisch S, Malz CR, Michel H, Meyer DL, Reichenbach A (1993) Optic tectum in congenitally monophthalmic fishes and chicks. J Hirnforsch 34:407–415PubMedGoogle Scholar
  804. Puzdrowski RL (1987) The peripheral distribution and central projections of the sensory rami of the facial nerve in goldfish, Carassius auratus. J Comp Neurol 259:382–293PubMedGoogle Scholar
  805. Puzdrowski RL (1988) Afferent projections of the trigeminal nerve in goldfish, Carassius auratus. J Morphol 198:1–10Google Scholar
  806. Puzdrowski RL (1989) Peripheral distribution and central projections of the lateral line nerves in goldfish, Carassius auratus. Brain Behav Evol 34:110–131PubMedGoogle Scholar
  807. Rama Krishna NS, Subhedar N (1989) Hypothalamic innervation of the pituitary in the catfish, Clarias batrachus (L.): a retrograde horseradish peroxidase study. Neurosci Lett 107:39–44PubMedGoogle Scholar
  808. Rama Krishna NS, Subhedar NK (1991) Cytoarchitectonic pattern of the hypothalamus in the catfish, Clarias batrachus (Linn.). J Hirnforsch 3:289–308Google Scholar
  809. Rama Krishna NS, Subhedar NK (1992) Distribution of FMRF amide-like immunoreactivity in the forebrain of the catfish, Clarias batrachus (Linn.). Peptides 13:183–191Google Scholar
  810. Rama Krishna NS, Subhedar NK, Schreibman MP (1992) FMRF-amide-like immunoreactive nervus terminalis innervation to the pituitary in the catfish, Clarias batrachus (Linn.): demonstration by lesion and immunohistochemical techniques. Gen Comp Endocrinol 85:111–117Google Scholar
  811. Ramón Y Cajal S (1911) Histologie du Systeme nerveux de rhomme et des vertébrés II. Maloine, Paris (reprint CSIC, Madrid, 1955), pp 217–226Google Scholar
  812. Raymond PA (1986) Movement of retinal terminals in goldfish optic tectum predicted by analysis of neuronal proliferation. J Neurosci 6:2479–2488PubMedGoogle Scholar
  813. Raymond PA, Easter SS Jr (1983) Postembryonic growth of the optic tectum in goldfish. I. Location of germinal cells and numbers of neurons produced. J Neurosci 5:1077–1091Google Scholar
  814. Raymond PA, Easter SS Jr, Burnham JA, Powers MK (1983) Postembryonic growth of the optic tectum in goldfish. II. Modulation of cell proliferation by retinal fiber input. J Neurosci 5:1092–1099Google Scholar
  815. Reaves TA, Hayward JN (1979) Isotocinergic neurons in the goldfish hypothalamus: physiological and morphological studies on chemically identified cells. Cell Tissue Res 202:17–23PubMedGoogle Scholar
  816. Reaves TA Jr, Hayward JN (1980) Functional and morphological studies of peptide-containing neuroendocrine cells in goldfish hypothalamus. J Comp Neurol 193:777–788PubMedGoogle Scholar
  817. Reichenbach A, Schaaf P, Schneider H (1990) Primary neurulation in teleosts. Evidence for epithelial genesis of central nervous tissue as in other vertebrates. J Hirnforsch 31:152–158Google Scholar
  818. Resink JW, Voorthuis PK, van de Hurk R, Vullings HGB, van Oordt PGWJ (1989) Pheromone detection and olfactory pathways in the brain of the female African catfish, Clarias gariepinus. Cell Tissue Res 256:337–345Google Scholar
  819. Réthelyi M, Szabo T (1973a) A particular nucleus in the mesencephalon of a weakly electric fish, Gymnotus carapo, Gymnotidae. I. Light microscopic observations. Exp Brain Res 17:229–241PubMedGoogle Scholar
  820. Réthelyi M, Szabo T (1973b) Neurohistological analysis of the lateral line lobe in a weakly electric fish, Gymnotus carapo (Gymnotidae, Pisces). Exp Brain Res 18:323–339PubMedGoogle Scholar
  821. Rhodes KJ, Zottoli SJ, Mufson EJ (1986) Choline acetyltransferase immunohistochemical staining in the goldfish (Carassius auratus) brain: evidence that the Mauthner cell does not contain choline acetyltransferase. Brain Res 381:215–224PubMedGoogle Scholar
  822. Riddle DR, Oakley B (1991) Evaluation of the organization of the primary olfactory projection in rainbow trout. J Neurosci 11:3752–3762PubMedGoogle Scholar
  823. Riddle DR, Oakley B (1992) Immunocytochemical identification of primary olfactory afferents in rainbow trout. J Comp Neurol 324:575–589PubMedGoogle Scholar
  824. Ridet J-M, Bauchot R (1990a) Analyse quantitative de l’encéphale des téléostéens: caracteres évolutifs et adaptatifs de Pencéphalisation. I. Généralités et analyse globale. J Hirnforsch 31:51–63PubMedGoogle Scholar
  825. Ridet J-M, Bauchot R (1990b) Analyse quantitative del’ encéphale des téléostéens: caracteres évolutifs et adaptatifs de l’encéphalisation. II. Les grandes subdivisions encéphali-ques. J Hirnforsch 31:433–458PubMedGoogle Scholar
  826. Ridet J-M, Bauchot R (1991) Analyse quantitative de l’encéphale des téléostéens: caracteres évolutifs et adaptatifs del’encéphalisation. III. Analyse multivariée des indices encé-phaliques. J Hirnforsch 32:439–449PubMedGoogle Scholar
  827. Roberts BL (1992) Neural mechanisms underlying escape behaviour in fishes. Rev Fish Biol Fish 2:243–266Google Scholar
  828. Roberts BA, Meredith GE (1989) The efferent system. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, Berlin Heidelberg New York, pp 445–459Google Scholar
  829. Roberts BL, Meredith GE, Maslam S (1989) Immunocytochemical analysis of the dopamine system in the brain and spinal cord of the European eel, Anguilla anguilla. Anat Embryol (Berl) 180:401–412Google Scholar
  830. Roberts BL, van Rossum A, de Jager S (1992) The influence of cerebellar lesions on the swimming performance of the trout. J Exp Biol 167:171–178PubMedGoogle Scholar
  831. Robertson JD, Bodenheimer TS, Stage DE (1963) The ultrastructure of Mauthner cell synapses and nodes in goldfish brains. J Cell Biol 19:159–199PubMedGoogle Scholar
  832. Rodriguez S, Rodriguez PA, Banse C, Rodriguez EM, Oksche A (1987) Reissner’s fiber, massa caudalis, and ampulla caudalis in the spinal cord of lamprey larvae (Geotria australis) light microscopic immunocytochemical and lectinhistochemical studies. Cell Tissue Res 247:359–366Google Scholar
  833. Rome LC, Swank D, Corda D (1993) How fish power swimming. Science 261:340–343PubMedGoogle Scholar
  834. Romeskie M, Sharma SC (1979) The goldfish optic tectum: a Golgi study. Neuroscience 4:625–642PubMedGoogle Scholar
  835. Rooney D, Szabo T (1991) Reciprocal connections between the ‘nucleus rotundus’ and the dorsal lateral telencephalon in the weakly electric fish Gnathonemus petersii. Brain Res 543:153–156PubMedGoogle Scholar
  836. Rooney D, New JG, Szabo T, Ravaille-Veron M (1989) Central connections of the olfactory bulb in the weakly electric fish Gnathonemus petersii. Cell Tissue Res 257:423–436Google Scholar
  837. Rooney D, Døving KB, Ravaille-Veron M, Szabo T (1992) The central connections of the olfactory bulbs in cod, Gadus morhua L. J Hirnforsch 33:63–75PubMedGoogle Scholar
  838. Rose GJ, Call SJ (1992) Differential distribution of ampullary and tuberous processing in the torus semicircularis of Eigenmannia. J Comp Physiol [A] 170:253–261Google Scholar
  839. Rose GJ, Call SJ (1993) Temporal filtering properties of midbrain neurons in an electric fish: implications for the function of dendritic spines. J Neurosci 13:1178–1189PubMedGoogle Scholar
  840. Rose GJ, Carfield JG (1991) Discrimination of the sign of frequency differences by Sternopygus, an electric fish without a jamming avoidance response. J Comp Physiol [A] 168:461–467Google Scholar
  841. Rose GJ, Heiligenberg W (1985) Structure and function of electrosensory neurons in the torus semicircularis of Eigenmannia: morphological correlates phase and amplitude sensitivity. J Neurosci 8:2269–2280Google Scholar
  842. Rose GJ, Heiligenberg W (1986a) Neural coding of difference frequencies in the midbrain of the electric fish Eigenmannia: reading the sense of rotation in an amplitude-phase plane. J Comp Physiol [A] 158:613–620Google Scholar
  843. Rose GJ, Heiligenberg W (1986b) Limits of phase and amplitude sensitivity in the torus semicircularis of Eigenmannia. J Comp Physiol [A] 159:813–822Google Scholar
  844. Rose GJ, Keller C, Heiligenberg W (1987) ‘Ancestral’ neural mechanisms of electrolocation suggest a substrate for the evolution of the jamming avoidance response. J Comp Physiol [A] 160:491–500Google Scholar
  845. Rose GJ, Kawasaki M, Heiligenberg W (1988) ‘Recognition units’ at the top of a neuronal hierarchy? Prepacemaker neurons in Eigenmannia code the sign of frequency differences unambiguously. J Comp Physiol [A] 162:759–772Google Scholar
  846. Ross LS, Parrett T, Easter SS Jr (1992) Axonogenesis and morphogenesis in the embryonic zebrafish brain. J Neurosci 12:467–482PubMedGoogle Scholar
  847. Rowe JS, Beauchamp RD (1982) Visual responses of nucleus corticalis neurons in the perciform teleost, northern rock bass (Ambloplites rupestris rupestris). Brain Res 236:205–209PubMedGoogle Scholar
  848. Rusoff AC (1984) Paths of axons on the visual system of perciform fish and implications of these paths for rules governing axonal growth. J Neurosci 4:1414–1428PubMedGoogle Scholar
  849. Rusoff AC, Easter SS Jr (1980) Order in the optic nerve of goldfish. Science 208:311–312PubMedGoogle Scholar
  850. Rusoff AC, Hapner SJ (1990a) Organization of retinopetal axons in the optic nerve of the cichlid fish, Herotilapia multispinosa. J Comp Neurol 294:418–430PubMedGoogle Scholar
  851. Rusoff AC, Hapner SJ (1990b) Development of retinopetal projections in the cichlid fish, Herotilapia multispinosa. J Comp Neurol 294:431–442PubMedGoogle Scholar
  852. Russell CJ, Bell CC (1978) Neuronal responses to electrosensory input in mormyrid valvula cerebelli. J Neurophysiol 41:1495–1510PubMedGoogle Scholar
  853. Saidel WM (1988) How to be unseen: an essay in obscurity. In: Atema J, Fay RR, Popper AH, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, Berlin Heidelberg New York, pp 487–513Google Scholar
  854. Saidel WM, Buttler AB (1991) Retinal projections in the freshwater butterfly fish, Pantodon buchholzi (Osteoglossoidei). II. Differential projections of the dorsal and ventral hemiretinas. Brain Behav Evol 38:154–168PubMedGoogle Scholar
  855. Sajovic P, Levinthal C (1982a) Visual cells of zebrafish optic tectum: mapping with small spots. Neuroscience 7:2407–2426PubMedGoogle Scholar
  856. Sajovic P, Levinthal C (1982b) Visual response properties of zebrafish tectal cells. Neuroscience 7:2427–2440PubMedGoogle Scholar
  857. Sajovic P, Levinthal C (1983) Inhibitory mechanism in zebrafish optic tectum: visual response properties of tectal cells altered by picrotoxin and bicuculline. Brain Res 271:227–240PubMedGoogle Scholar
  858. Sakamoto N, Ito H (1982) Fiber connections of the corpus glomerulosum in a teleost, Navodon modestus. J Comp Neurol 205:291–298PubMedGoogle Scholar
  859. Sakamoto N, Ito H, Ueda S (1981) Topographic projections between the nucleus isthmi and the optic tectum in a teleost, Navodon modestus. Brain Res 224:225–234PubMedGoogle Scholar
  860. Sandri C, Akert K, Kristol C, van Buren JM, Bennett MVL (1976) AChE-positive and-negative motoneurones in the spinal cord of Sternarchus albifrons. Brain Res 111:157–161PubMedGoogle Scholar
  861. Sas E, Maler L (1983) The nucleus praeeminentialis: a Golgi study of a feedback center in the electrosensory system of gymnotid fish. J Comp Neurol 221:127–144PubMedGoogle Scholar
  862. Sas E, Maler L (1986a) The optic tectum of gymnotiform teleosts Eigenmannia virescens and Apteronotus leptorhynchus: a Golgi study. Neuroscience 18:215–246PubMedGoogle Scholar
  863. Sas E, Maler L (1986b) Retinofugal projections in a weakly electric gymnotid fish (Apteronotus leptorhynchus). Neuroscience 18:247–259PubMedGoogle Scholar
  864. Sas E, Maler L (1986c) Identification of a nucleus isthmi in the weakly electric fish Apteronotus leptorhynchus (Gymnotidae). Brain Behav Evol 28:170–185PubMedGoogle Scholar
  865. Sas E, Maler L (1987) The organization of afferent input to the caudal lobe of the cerebellum of gymnotid fish Apteronotus leptorhynchus. Anat Embryol (Berl) 177:35–79Google Scholar
  866. Sas E, Maler L (1991) Somatostatin-like immunoreactivity in the brain of an electric fish (Apteronotus leptorhynchus) identified with monoclonal antibodies. J Chem Neuroanat 4:155–186PubMedGoogle Scholar
  867. Sas E, Maler L, Tinner B (1990) Catecholaminergic systems in the brain of a gymnotiform teleost fish: an immunohistochemical study. J Comp Neurol 292:127–162PubMedGoogle Scholar
  868. Sas E, Maler L, Weld M (1993) Connections of the olfactory bulb in the gymnotiform fish Apteronotus leptorhynchus. J Comp Neurol 335:486–507PubMedGoogle Scholar
  869. Satou M (1990) Synaptic organization, local neuronal circuitry, and functional segregation of the teleost olfactory bulb. Prog Neurobiol 34:115–142PubMedGoogle Scholar
  870. Satou M (1992) Synaptic organization of the olfactory bulb and its central projection. In: Hara TJ (ed) Fish chemoreception. Chapman and Hall, London, pp 40–59Google Scholar
  871. Satou M, Fujita I, Ichikawa M, Yamaguchi K, Ueda K (1983) Field potential and intracellular potential studies of the olfactory bulb in the carp: evidence for a functional separation of the olfactory bulb into lateral and medial subdivisions. J Comp Physiol 152A:319–333Google Scholar
  872. Saunders J, Bastian J (1984) The physiology and morphology of two types of electrosensory neurons in the weakly electric fish Apteronotus leptorhynchus. J Comp Physiol 154:199–209Google Scholar
  873. Schäfer H, Schulz R, Blüm V (1989) Immunoreactivity to gonadotropin-releasing hormone and gonadotrophic hormone in the brain and pituitary of the rainbow trout Salmo gairdneri. Cell Tissue Res 257:227–235PubMedGoogle Scholar
  874. Scheich H, Ebbesson SOE (1981) Inputs to the torus semicircularis in the electric fish Eigenmannia virescens. A horseradish peroxidase study. Cell Tissue Res 215:531–536PubMedGoogle Scholar
  875. Schellart NAM (1983) Acousticolateral and visual processing and their interaction in the torus semicircularis of the trout, Salmo gairdneri. Neurosci Lett 42:39–44PubMedGoogle Scholar
  876. Schellart NAM, Kamermans M, Nederstigt LJA (1987) An electrophysiological study of the topographical organization of the multisensory torus semicircularis of the rainbow trout. Comp Biochem Physiol 88A:461–469Google Scholar
  877. Schellart NAM, Prins M, Kroese ABA (1992) The pattern of trunk lateral line afferents and efferents in the rainbow trout (Salmo gairdneri). Brain Behav Evol 39:371–380PubMedGoogle Scholar
  878. Schikorski T, Braun N, Zimmermann H (1992) Cytoarchitectural organization of the electromotor system in the electric catfish (Malapterurus electricus). Cell Tissue Res 269:481–493Google Scholar
  879. Schikorski T, Braun N, Zimmermann H (1994a) Immunocytochemical characterization of the synaptic innervation of a single spinal neuron, the electric catfish electromotoneuron. J Comp Neurol 343:647–657PubMedGoogle Scholar
  880. Schikorski T, Braun N, Zimmermann H (1994b) Projection of brain stem neurons to the giant electromotoneurons in the cervical spinal cord of the electric catfish Malapterurus electricus. Brain Behav Evol 43:306–318PubMedGoogle Scholar
  881. Schlussman SD, Kobylack MA, Dunn-Meynell AA, Sharma SC (1990) Afferent connections of the optic tectum in channel catfish Ictalurus punctatus. Cell Tissue Res 262:531–541PubMedGoogle Scholar
  882. Schmidt JT (1979) The laminar organization of optic nerve fibres in the tectum of goldfish. Proc R Soc Lond B 205:287–306PubMedGoogle Scholar
  883. Schnitzlein HN (1968) Introductory remarks on the telencephalon of fish. In: Ingle D (ed) The central nervous system and fish behavior. University of Chicago Press, Chicago, pp 97–100Google Scholar
  884. Schnitzlein HN, Brown HK (1975) Spinal motoneurons of the goldfish (Carassius auratus). Brain Behav Evol 12:207–228PubMedGoogle Scholar
  885. Schober A, Malz CR, Meyer DL (1993) Enzymehistochemical demonstration of nitric oxide synthase in the diencephalon of the rainbow trout (Oncorhynchus mykiss). Neurosci Lett 151:67–70PubMedGoogle Scholar
  886. Scholes JH (1979) Nerve fibre topography in the retinal projection to the tectum. Nature 278:620–624PubMedGoogle Scholar
  887. Scholes JH (1991) The design of the optic nerve in fish. Vis Neurosci 7:129–139PubMedGoogle Scholar
  888. Schroeder DM, Vanegas H (1977) Cy to architecture of the tectum mesencephali in two types of siluroid teleosts. J Comp Neurol 175:287–300PubMedGoogle Scholar
  889. Schroeder DM, Vanegas H, Ebbesson SOE (1980) Cytoarchitecture of the optic tectum of the squirrelfish, Holocentrus. J Comp Neurol 191:337–351PubMedGoogle Scholar
  890. Schuster T (1973) Elektronenmikroskopische Untersuchungen am Nc. n. oculomotorii von Salmo irideus (Gibbons 1855). Z Mikrosk Anat Forsch 87:730–764PubMedGoogle Scholar
  891. Schuster T (1974) Elektronenmikroskopische Untersuchung von Synapsen-Typen im Nc. n. oculomotorii von Salmo irideus. Z Mikrosk Anat Forsch 88:497–510PubMedGoogle Scholar
  892. Schuster T, Schwartz A (1984) Teleost Mauthner cap cells: intimate contact by gap junctions. J Hirnforsch 25:331–341PubMedGoogle Scholar
  893. Sester U, Probst W, Rahmann H (1984) Einfluss unterschiedlicher Akklimationtemperaturen auf die Ultrastruktur neuronaler Synapsen von Buntbarschen (Tilapia mariae; Cichlidae, Teleostei). J Hirnforsch 6:701–711Google Scholar
  894. Sharma SC, Romeskie M (1984) Plasticity of retino-tectal connections in teleosts. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum, New York, pp 163–184Google Scholar
  895. Sharma SC, Dunn-Meynell AA, Kobylack MA (1985) A note on a tectal neuron projecting via the tectobulbar tract in teleosts. Neurosci Lett 59:265–270PubMedGoogle Scholar
  896. Sharma SC, Berthoud VM, Breckwoldt R (1989) Distribution of substance P-like immunoreactivity in the goldfish brain. J Comp Neurol 279:104–116PubMedGoogle Scholar
  897. Sharma SC, Jadhao AG, Prasada Rao PD (1993) Regeneration of supraspinal projection neurons in the adult goldfish. Brain Res 620:221–228PubMedGoogle Scholar
  898. Sheldon RE, Brookover C (1909) The nervus terminalis in teleosts. Anat REc 3:257–259Google Scholar
  899. Shiga T, Oka Y, Satou M, Okumoto N, Ueda K (1985a) Efferents from the supracommissural ventral telencephalon in the hime salmon (landlocked red salmon, Oncorhynchus nerka): an anterograde degeneration study. Brain Res Bull 14:55–61PubMedGoogle Scholar
  900. Shiga T, Oka Y, Satou M, Okumoto N, Ueda K (1985b) A HRP study of afferent connections of the supracommissural ventral telencephalon and the medial preoptic area in Himé salmon (landlocked red salmon, Oncorhynchus nerka). Brain Res 364:162–177Google Scholar
  901. Shiga T, Oka Y, Satou M, Okumoto N, Ueda K (1989) Neuronal organization of the supracommissural ventral telencephalon and the nucleus preopticus periventricularis in the Himé salmon (landlocked red salmon, Oncorhynchus nerka): a Golgi study. J Hirnforsch 30:153–161PubMedGoogle Scholar
  902. Shumway CA (1989a) Multiple electrosensory maps in the medulla of weakly electric fish. I. Physiological differences. J Neurosci 9:4388–4399PubMedGoogle Scholar
  903. Shumway CA (1989b) Multiple electrosensory maps in the medulla of weakly electric fish. II. Anatomical differences. J Neurosci 9:4400–4415PubMedGoogle Scholar
  904. Shumway CA, Maler L (1989) GABAergic inhibition shapes temporal and spatial response properties of pyramidal cells in the electrosensory lateral line lobe of gymnotiform fish. J Comp Physiol [A] 164:391–407Google Scholar
  905. Sibbing FA (1984) Food handling and mastication in the carp (Gyprinus carpis). PhD thesis, Wageningen, NetherlandsGoogle Scholar
  906. Silver WL, Finger TE (1984) Electrophysiological examination of the chemoreceptors on the free rays of the sea robin, Prionotus carolinus. J Comp Physiol 154:167–174Google Scholar
  907. Skeen IC, Northmore DPM (1984) Patterns of deoxyglucose and glucose labeling in the optic tectum of monocularly stimulated bass. Neurosci Lett 52:191–197PubMedGoogle Scholar
  908. Sligar CM, Voneida TJ (1976) Tectal efferents in the blind cave fish, Astyanax hubbsi. J Comp Neurol 165:107–124PubMedGoogle Scholar
  909. Snow JL, Rylander MK (1982) A quantitative study of the optic system of butterfly fishes (Fam. Chaetodontodae). J Hirnforsch 23:121–125PubMedGoogle Scholar
  910. Somogyi P, Eshhar N, Teichberg VI, Roberts JDB (1990) Subcellular localization of a putative kainate receptor in Bergmann glial cells using a monoclonal antibody in the chick and fish cerebellar cortex. Neuroscience 35:9–30PubMedGoogle Scholar
  911. Song J, Northcutt RG (1991a) Morphology, distribution and innervation of the lateral-line receptors of the Florida gar, Lepisosteus platyrhincus. Brain Behav Evol 37:10–37PubMedGoogle Scholar
  912. Song J, Northcutt RG (1991b) The primary projections of the lateral-line nerves of the Florida gar, Lepisosteus platyrhincus. Brain Behav Evol 37:38–63PubMedGoogle Scholar
  913. Sorensen PW, Hara TJ, Stacey NE (1991) Sex pheromones selectively stimulate the medial olfactory tracts of male goldfish. Brain Res 558:343–347PubMedGoogle Scholar
  914. Sotelo C, Rethelyi M, Szabo T (1975) Morphological correlates of electrotonic coupling in the magnocellular mesencephalic nucleus of the weakly electric fish Gymnotus carapo. J Neurocytol 4:587–607PubMedGoogle Scholar
  915. Springer AD (1983) Centrifugal innervation of goldfish retina from ganglion cells of the nervus terminalis. J Comp Neurol 214:404–415Google Scholar
  916. Springer AD, Gaffney JS (1981) Retinal projections in the goldfish: a study using cobaltous-lysine. J Comp Neurol 203:401–424PubMedGoogle Scholar
  917. Springer AD, Mednick AS (1983) Dorsotemporal retinal ganglion cell axons of goldfish are located in the dorsal rather than ventral optic tract. Brain Res 273:152–155PubMedGoogle Scholar
  918. Springer AD, Mednick AS (1984) Selective innervation of the goldfish suprachiasmatic nucleus by ventral retinal ganglion cell axons. Brain Res 323:293–296PubMedGoogle Scholar
  919. Springer AD, Mednick AS (1985a) Retinofugal and retinopetal projections in the cichlid fish Astronotus ocellatus. J Comp Neurol 236:179–196PubMedGoogle Scholar
  920. Springer AD, Mednick AS (1985b) Topography of the retinal projection to the superficial pretectal parvicellular nucleus of goldfish: a colbaltous-lysine study. J Comp Neurol 237:239–250PubMedGoogle Scholar
  921. Springer AD, Mednick AS (1986a) Retinotopic and chronotopic organization of goldfish retinal ganglion cell axons throughout the optic nerve. J Comp Neurol 247:221–232PubMedGoogle Scholar
  922. Springer AD, Mednick AS (1986b) Simple and complex retinal ganglion cell axonal rearrangements at the optic chi-asm. J Comp Neurol 247:233–245PubMedGoogle Scholar
  923. Stefanelli A, Camposano A (1946/1947) I centri tegmentali dell’Anguilla e le relazioni degli elementi giganti del tegmento dei Ciclostomi, dei Pesci e degli Anfibi; ricerche sul sistema mauthneriano. Pubbl Staz Zool Napoli 20:1–27Google Scholar
  924. Stell WK, Walker SE, Chohan KS, Ball AK (1984) The goldfish nervus terminalis: a luteinizing hormone-releasing hormone and molluscan cardio-cxcitatory peptide immunoreactive olfactoretinal pathway. Proc Natl Acad Sci USA 81:940–944PubMedGoogle Scholar
  925. Stell WK, Walker SE, Ball AK (1987) Functional-anatomical studies on the terminal nerve projection to the retina of bony fishes. Ann NY Acad Sci 519:80–96PubMedGoogle Scholar
  926. Stendell W (1914) Die Faseranatomie des Mormyridengehirns. Abh Senckenb Naturforsch Ges 36:3–40Google Scholar
  927. Sterling P (1977) Anatomy and physiology of goldfish oculomotor system. I. Structure of abducens nucleus. J Neurophysiol 40:557–572PubMedGoogle Scholar
  928. Stevenson JA, Yoon MG (1981) Mitosis of radial glial cells in the optic tectum of adult goldfish. J Neurosci 1:862–875PubMedGoogle Scholar
  929. Stevenson JA, Yoon MG (1982) Morphology of radial glia, ependymal cells, and periventricular neurons in the optic tectum of goldfish (Carassius auratus). J Comp Neurol 205:128–138PubMedGoogle Scholar
  930. Streit P, van Buren JM, Sandri C, Akert K, Bennett MVL (1978) Differential HRP labeling of motoneurons and electromotor neurons in the spinal cord of the gymnotid Ster-narchus albifrons. Brain Res 142:559–565PubMedGoogle Scholar
  931. Striedter GF (1990a) The diencephalon of the channel catfish, Ictalurus punctatus. I. Nuclear organization. Brain Behav Evol 36:329–354PubMedGoogle Scholar
  932. Striedter GF (1990b) The diencephalon of the channel catfish, Ictalurus punctatus. II. Retinal, tectal, cerebellar and telencephalic connections. Brain Behav Evol 36:355–377PubMedGoogle Scholar
  933. Striedter GF (1991) Auditory, electrosensory and mechanosensory lateral line pathways through the forebrain in channel catfishes. J Comp Neurol 312:311–331PubMedGoogle Scholar
  934. Striedter GF (1992) Phylogenetic changes in the connections of the lateral preglomerular nucleus in ostariophysan teleosts: a pluralistic view of brain evolution. Brain Behav Evol 39:329–357PubMedGoogle Scholar
  935. Striedter GF, Northcutt RG (1989) Two distinct visual pathways through the superficial pretectum in a percomorph teleost. J Comp Neurol 283:342–354PubMedGoogle Scholar
  936. Stroh T, Zupanc GKH (1993) Identification and localization of somatostatin-like immunoreactivity in the cerebellum of gymnotiform fish, Apteronotus leptorhynchus. Neurosci Lett 160:145–148PubMedGoogle Scholar
  937. Studnicka FK (1896) Beiträge zur Anatomie und Entwicklungsgeschichte des Vorderhirns der Cranioten. SB Akad Böhm Wiss Math. nat. Kl, pt 2Google Scholar
  938. Stuermer CAO (1984) Rules for retinotectal terminal arborizations in the goldfish optic tectum: a whole mount study. J Comp Neurol 229:214–232PubMedGoogle Scholar
  939. Stuermer CAO (1988) Retinotopic organization of the developing retinotectal projection in the zebrafish embryo. J Neurosci 8:4513–4530PubMedGoogle Scholar
  940. Stuermer CAO, Easter SS Jr (1984) A comparison of the normal and regenerated retinotectal pathways of goldfish. J Comp Neurol 223:57–76PubMedGoogle Scholar
  941. Stuermer CAO, Raymond PA (1989) Developing retinotectal projection in larval goldfish. J Comp Neurol 281:630–640PubMedGoogle Scholar
  942. Subhedar N, Rama Krishna NS, Prasada Rao PD (1990) The intrinsic organization of the nucleus preopticus in the catfish, Clarias batrachus. J Hirnforsch 31:25–40PubMedGoogle Scholar
  943. Szabo T (1983) Cerebellar pathways in the brain of the mormyrid teleost fish. Acta Morphol Hung 31:219–234PubMedGoogle Scholar
  944. Szabo T, Enger PS (1964) Pacemaker activity of the medullary nucleus controlling electric organs in high frequency gymnotid fish. Z Vgl Physiol 49:285–300Google Scholar
  945. Szabo T, Libouban S (1979) On the course and origin of cranial nerves in the teleost fish Gnathonemus determined by ortho-and retrograde horseradish peroxidase axonal transport. Neurosci Lett 11:265–270PubMedGoogle Scholar
  946. Szabo T, Sakata H, Ravaille M (1975) An electronically coupled pathway in the central nervous system of some teleost fish Gymnotidae and Mormyridae. Brain Res 95:459–474PubMedGoogle Scholar
  947. Szabo T, Libouban S, Haugedé-Carré F (1979) Convergence of common and specific sensory afferents to the cerebellar auricle (auricula cerebelli) in the teleost fish Gnathonemus demonstrated by HRP method. Brain Res 168:619–622PubMedGoogle Scholar
  948. Szabo T, Ravaille M, Libouban S, Enger PS (1983) The mormyrid rhombencephalon. I. Light and EM investigations on the structure and connections of the lateral line lobe nucleus with HRP labeling. Brain Res 266:1–19PubMedGoogle Scholar
  949. Szabo T, Lazar G, Libouban S, Toth P, Ravaille M (1987) Oculomotor system of the weakly electric fish Gnathonemus petersii. J Comp Neurol 264:480–493PubMedGoogle Scholar
  950. Szabo T, Heiligenberg W, Ravaille-Veron M (1989) HRP labeling and ultrastructural localization of prepacemaker terminals within the medullary pacemaker nucleus of the weakly electric gymnotiform fish Apteronotus leptorhynchus. J Comp Neurol 284:169–173PubMedGoogle Scholar
  951. Szabo T, Libouban S, Denizot J-P (1990) A well defined spinocerebellar system in the weakly electric teleost fish Gnathonemus petersii. A tracing and immunohistochemical study. Arch Ital Biol 128:229–247PubMedGoogle Scholar
  952. Szabo T, Libouban S, Ravaille-Veron M (1991) Fibres longues ascendantes dans les colonnes dorsals d’n poisson téléostéen: une voie disynaptique reliant des organes sensoriels au cervelet. C R Acad Sci [Paris] 313 (III):413–420Google Scholar
  953. Tapp RL (1974) Axon numbers and distribution, myelin thickness, and the reconstruction of the compound action potential in the optic nerve of the teleost: Eugerres plumieri. J Comp Neurol 153:267–274PubMedGoogle Scholar
  954. Tavolga WN (1971) Sound production and detection. In: Hoar WS, Randall DJ (eds) Fish physiology, vol 5. Academic, New York, pp 135–205Google Scholar
  955. Thommesen G (1983) Morphology, distribution, and specificity of olfactory receptor cells in salmonid fishes. Acta Physiol Scand 117:241–250PubMedGoogle Scholar
  956. Tohyama M, Shiosaka S, Takagi H, Inagaki S, Takatsuki K, Sakanaka M, Senba E, Kawai Y, Minagawa H (1981) Somatostatin-like immunoreactivity in the facial, glossopharyngeal and vagal lobes of the carp. Neurosci Lett 24:233–236PubMedGoogle Scholar
  957. Tokunaga A, Akert K, Sandri C, Bennett MVL (1980) Cell types and synaptic organization of the medullary electromotor nucleus in a constant frequency weakly electric fish, Sternarchus albifrons. J Comp Neurol 192:407–426PubMedGoogle Scholar
  958. Tong C-K, Pan M-P, Chang Y-C (1992) Characterization of L-glutamate and kainate binding sites in the brain of a freshwater fish, Telapilia monsanbica. Neuroscience 49:237–246PubMedGoogle Scholar
  959. Tong S-L (1982) The nucleus praeeminentialis: an electro-and mechanoreceptive center in the brain stem of the catfish. J Comp Physiol 145:299–309Google Scholar
  960. Tong S-L, Bullock TH (1982) Electroreceptive representation and its dynamics in the cerebellum of the catfish, Ictalurus nebulosus (Ictaluridae, Siluriformes). J Comp Physiol 145:289–298Google Scholar
  961. Tong S-L, Finger TE (1983) Central organization of the electrosensory lateral line system in bullhead catfish Ictalurus nebulosus. J Comp Neurol 217:1–16PubMedGoogle Scholar
  962. Torres B, Pastor AM, Cabrera B, Salas C, Delgado-García JM (1992) Afferents to the oculomotor nucleus in the goldfish (Carassius auratus) as revealed by retrograde labeling with horseradish peroxidase. J Comp Neurol 324:449–461PubMedGoogle Scholar
  963. Tricas TC, Highstein SM (1990) Visually mediated inhibition of lateral line primary afferent activity by the octavolateralis efferent system during predation in the free-swimming toadfish, Opsanus tau. Exp Brain Res 83:233–236PubMedGoogle Scholar
  964. Tricas TC, Highstein SM (1991) Action of the octavolateralis efferent system upon the lateral line of free-swimming toadfish, Opsanus tau. J Comp Physiol [A] 169:25–37Google Scholar
  965. Triller A, Korn H (1981) Morphologically distinct classes of inhibitory synapses arise from the same neurons: ultra-structural identification from crossed vestibular interneurons intracellularly stained with HRP. J Comp Neurol 203:131–155PubMedGoogle Scholar
  966. Trujillo-Cenóz O, Bertolotto C (1990) Mauthner cells in the medulla of the weakly electric fish Gymnotus carapo. Experientia 46:441–443Google Scholar
  967. Tsuji S (1975) Histochemical demonstration of ace-tylcholinesterase-rich cells in spinal electromotor nucleus of Electrophorus electricus. Brain Res 88:499–501PubMedGoogle Scholar
  968. Tumosa D, Stell WK, Johnson CD, Epstein ML (1986) Putative cholinergic interneurons in the optic tectum of goldfish. Brain Res 370:365–369PubMedGoogle Scholar
  969. Tuttle R, Masuko S, Nakajima Y (1987) Small vesicle bouton synapses on the distal half of the lateral dendrite of the goldfish Mauthner cell: Freeze-fracture and thin section study. J Comp Neurol 265:254–274PubMedGoogle Scholar
  970. Uchiyama H (1989) Centrifugal pathways to the retina: influence of the optic tectum. Vis Neurosci 3:183–206PubMedGoogle Scholar
  971. Uchiyama H (1990) Immunohistochemical subpopulations of retinopetal neurons in the nucleus olfactoretinalis in a teleost, the whitespotted greenling (Hexagrammos stellen). J Comp Neurol 293:34–62Google Scholar
  972. Uchiyama H, Ito H (1984) Fiber connections and synaptic organization of the preoptic retinopetal nucleus in the filefish (Balistidae, Teleostei). Brain Res 298:11–24PubMedGoogle Scholar
  973. Uchiyama H, Sakamoto N, Ito H (1981) A retinopetal nucleus in the preoptic area in a teleost, Navodon modestus. Brain Res 222:119–124PubMedGoogle Scholar
  974. Uchiyama H, Ito H, Nakamura S (1985) Electrophysiological evidence for tectal efferents to the neurons projecting to the retina in a teleost fish. Exp Brain Res 57:408–410PubMedGoogle Scholar
  975. Uchiyama H, Matsutani S, Ito H (1986) Tectal projection neurons to the retinopetal nucleus in the filefish. Brain Res 369:260–266PubMedGoogle Scholar
  976. Uchiyama H, Matsutani S, Ito H (1988) Pretectum and accessory optic systems in the filefish Navodon modestus (Ballistidae, Teleostei) with special reference to visual projections to the cerebellum and oculomotor nuclei. Brain BehavEvol 31:170–180Google Scholar
  977. Uehara M, Ueshima T (1986) Morphological studies of the spinal cord in tetraodontiformes fishes. J Morphol 190:325–333PubMedGoogle Scholar
  978. Uematsu K, Shirasaki M, Storm-Mathisen J (1993) GABA-and glycine-immunoreactive neurons in the spinal cord of the carp, Cyprinus carpio. J Comp Neurol 332:59–68PubMedGoogle Scholar
  979. Vallarino M (1985) Occurrence of β-endorphin-like immuno-reactivity in the brain of the teleost, Boops boops. Gen Comp Endocrinol 60:63–69PubMedGoogle Scholar
  980. Van Asselt E, de Graaf F, Smit-Onel MJ, van Raamsdonk W (1991) Spinal neurons in the zebrafish labeled with fluorogold and wheat-germ agglutinin. Neuroscience 43:611–622PubMedGoogle Scholar
  981. Van den Dungen HM, Buijs RM, Pool CW, Terlou M (1982) The distribution of vasotocin and isotocin in the brain of the rainbow trout. J Comp Neurol 212:146–157PubMedGoogle Scholar
  982. Van Raamsdonk W, Mos W, Smit-Onel MJ, van der Laarse WJ, Fehres R (1983) The development of the spinal motor column in relation to the myotomal muscle fibers in the zebrafish (Brachydanio rerio). Anat Embryol (Berl) 169:125–139Google Scholar
  983. Vanegas H, Ebbesson SOE (1976) Telencephalic projections in two teleost species. J Comp Neurol 165:181–196PubMedGoogle Scholar
  984. Vanegas H, Ito H (1983) Morphological aspects of the teleostean visual system: a review. Brain Res Rev 6:117–137Google Scholar
  985. Vanegas H, Laufer M, Amat J (1974) The optic tectum of a perciform teleost. I. General configuration and cytoarchitecture. J Comp Neurol 154:43–60PubMedGoogle Scholar
  986. Vanegas H, Williams B, Freeman JA (1979) Responses to stimulation of marginal fibers in the teleostean optic tectum. Exp Brain Res 34:335–349PubMedGoogle Scholar
  987. Vanegas H, Ebbesson SOE, Laufer M (1984a) Morphological aspects of the teleostean optic tectum. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum, New York, pp 93–120Google Scholar
  988. Vanegas H, Williams B, Essayag E (1984b) Electrophysiological aspects of the teleostean optic tecum. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum, New York, pp 121–161Google Scholar
  989. Vecino E, Ekström P (1990) Distribution of metenkephalin, leuenkephalin, substance P, neuropeptide Y, FMRF-amide, and serotonin immunoreactivity in the optic tectum of the atlantic salmon (Salmo salar L). J Comp Neurol 299:299–241Google Scholar
  990. Vecino E, Ekström P (1992) Colocalization of neuropeptide Y (NPY)-like and FMRFamide-like immunoreactivities in the brain of the Atlantic salmon (Salmo salar). Cell Tissue Res 270:435–442PubMedGoogle Scholar
  991. Vecino E, Sharma SC (1992) The development of substance P-like immunoreactivity in the goldfish brain. Anat Embryol (Berl) 186:41–47Google Scholar
  992. Vecino E, Covenas R, Alsonso JR, Lara J, Aijon J (1989) Immunocytochemical study of substance P-like cell bodies and fibers in the brain of the rainbow trout Salmo gaird-neri. J Anat 165:191–200PubMedGoogle Scholar
  993. Vecino E, Ekström P, Sharma SC (1991) Enkephalin-immunoreactive cells in the mesencephalic tegmentum project to the optic tectum of the teleosts Salmo gairdneri and Salma salar. Cell Tissue Res 264:133–137PubMedGoogle Scholar
  994. Vecino E, Piñuela C, Arèvalo R, Lara J, Alonso R, Aijón J (1992) Distribution of enkephalin like immunoreactivity in the central nervous system of the rainbow trout: an immunocytochemical study. J Anat 180:435–453PubMedGoogle Scholar
  995. Vigh B, Vigh-Teichmann I (1971) Structure of the medullospinal liquor-contacting neuronal system. Acta Biol Acad Sci Hung 22:227–243PubMedGoogle Scholar
  996. Vigh B, Vigh-Teichmann I, Aros B, Varjassy P (1972) Lichtund elektronenmikroskopische Untersuchungen des Saccus vasculosus und des Nervus und Tractus sacci vasculosi. Z Zeilforsch 129:508–522Google Scholar
  997. Vigh-Teichmann I, Vigh B, Aros B (1976) Cerebrospinal fluidcontacting neurons, ciliated perikarya and ‘peptidergic’ synapses in the magnocellular preoptic nucleus of teleostean fishes. Cell Tissue Res 165:397–413PubMedGoogle Scholar
  998. Villani L, Migani P, Poli A, Niso R, Contestabile A (1982) Neurotoxic effect of kainic acid on ultrastructure and GABAergic parameters in the goldfish cerebellum. Neuroscience 7:2515–2524PubMedGoogle Scholar
  999. Villani L, Battistini S, Bissoli R, Contestabile A (1987) Cholinergic projections in the telencephalo-habenular interpeduncular system of the goldfish. Neurosci Lett 76:263–268PubMedGoogle Scholar
  1000. Villani L, Bissoli R, Garolini S, Guarnieri T, Battistini S, Saverino O, Contestabile A (1988) Effect of AF64A on the cholinergic system of the retina and optic tectum of goldfish. Exp Brain Res 70:455–462PubMedGoogle Scholar
  1001. Villani L, Guarnieri T, Salsi U, Bollini D (1991) Substance P in the habenulo-interpeduncular system of the goldfish. Brain Res Bull 26:225–228PubMedGoogle Scholar
  1002. Villani L, Guarnieri T, Zironi I (1994a) Choline acetyltransferase and NADPH-diaphorase localization in the goldfish habenulo-interpeduncular system. Neurosci Lett 173:67–70PubMedGoogle Scholar
  1003. Villani L, Dipietrangelo L, Pallotti C, Pettazzoni P, Zironi I, Guarnieri T (1994b) Ultrastructural and immunohistochemical study of the telencephalo-habenulo-interpeduncular connections in the goldfish. Brain Res Bull 34:1–5PubMedGoogle Scholar
  1004. Von Bartheld CS, Meyer DL (1985) Trigeminal and facial innervation of cirri in three teleost species. Cell Tissue Res 241:615–622Google Scholar
  1005. Von Bartheld CS, Meyer DL (1986) Tracing of single fibers of the nervus terminalis in the goldfish brain. Cell Tissue Res 245:143–158Google Scholar
  1006. Von Bartheld CS, Meyer DL (1987) Comparative neurology of the optic tectum in ray-finned fishes: patterns of lamination formed by retinotectal projections. Brain Res 420:277–288Google Scholar
  1007. Von Bartheld CS, Meyer DL (1988) Retinofugal and retinopetal projections in the teleost Channa micropeltes (Channiformes). Cell Tissue Res 251:651–663Google Scholar
  1008. Von Bartheld CS, Meyer DL, Fiebig E, Ebbesson SOE (1984) Central connections of the olfactory bulb in the goldfish, Carassius auratus. Cell Tissue Res 238:475–487Google Scholar
  1009. Von Bartheld CS, Rickman MJ, Meyer DL (1986) A light-and electron microscopic study of mesencephalic neurons projecting to the ganglion of the nervus terminalis in the goldfish. Cell Tissue Res 246:63–70Google Scholar
  1010. Von der Emde G, Bleckmann H (1992) Differential responses of two types of electroreceptive afferents to signal distortions may permit capacitance measurement in a weakly electric fish, Gnathonemus petersii. J Comp Physiol [A] 171:683–694Google Scholar
  1011. Von Deusen EB, Meyer RL (1990) Pharmacological evidence for NMDA, APB and kainate/quisqualate retinotectal transmission in the isolated whole tectum of goldfish. Brain Res 536:86–96PubMedGoogle Scholar
  1012. Von Kupfer K (1906) Die Morphogenie des Zentralnervensystems. In: Hertwig O (ed) Handbuch der vergleichenden und experimentellen Entwicklungslehre der Wirbeltiere, vol 2, part 2 Gustav Fischer, Jena, pp 1–272Google Scholar
  1013. Von Rekowski C, Zippel HP (1993) In goldfish the qualitative discriminative ability for odors rapidly returns after bilateral nerve axotomy and lateral olfactory tract transection. Brain Res 618:338–340Google Scholar
  1014. Voneida TJ, Fish SE (1984) Central nervous system changes related to the reduction of visual input in a naturally blind fish (Astyanax hubbsi). Am Zool 24:775–782Google Scholar
  1015. Voneida TJ, Sligar CM (1976) A comparative neuroanatomic study of retinal projections in two fishes: Astyanax hubbsi (the blind cave fish), and Astyanax mexicanus. J Comp Neurol 165:89–106PubMedGoogle Scholar
  1016. Wang D, Maler L (1994) The immunocytochemical localization of glutamate in the electrosensory system of the gymnotiform fish, Apteronotus leptorhynchus. Brain Res 653:215–222PubMedGoogle Scholar
  1017. Wathey JC (1988) Identification of the teleost Edinger-Westphal nucleus by retrograde horseradish peroxidase labelling and by electrophysiological criteria. J Comp Physiol [A] 162:511–524Google Scholar
  1018. Wathey JC, Wullimann MF (1988) A double-label study of efferent projections from the Edinger-Westphal nucleus in goldfish and kelp bass. Neurosci Lett 93:121–126PubMedGoogle Scholar
  1019. Waxman SG (1971) An ultrastructural study of the pattern of myelination of preterminal fibers in teleost oculomotor nuclei, electromotor nuclei, and spinal cord. Brain Res 27:189–201PubMedGoogle Scholar
  1020. Waxman SG, Pappas GD (1971) An electron microscopic study of synaptic morphology in the oculomotor nuclei of three inframammalian species. J Comp Neurol 143:41–72PubMedGoogle Scholar
  1021. Webb JF (1989) Developmental constraints and evolution of the lateral line system in teleost fishes. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, Berlin Heidelberg New York, pp 79–97Google Scholar
  1022. Weiss O, Meyer DL (1988) Odor stimuli modulate retinal excitability in fish. Neurosci Lett 93:209–213PubMedGoogle Scholar
  1023. Weld MM, Maler L (1992) Substance P-like immunoreactivity in the brain of the gymnotiform fish Apteronotus leptorhynchus: presence of sex differences. J Chem Neuroanat 5:107–129PubMedGoogle Scholar
  1024. Westerfield M, McMurray JV, Eisen JS (1986) Identified motoneurons and their innervation of axial muscles in the zebrafish. J Neurosci 6:2267–2277PubMedGoogle Scholar
  1025. White SA, Fernald RD (1993) Gonadotropin-releasing hormone-containing neurons change size with reproductive state in female Haplochromis burtoni. J Neurosci 13:434–441PubMedGoogle Scholar
  1026. Williams B, Hernandez N, Vanegas H (1983) Electrophysiological analysis of the teleostean nucleus isthmi and its relationships with the optic tectum. J Comp Physiol 152:545–554Google Scholar
  1027. Wilm C, Fritzsch B (1989) Development of tectal neurons in the perciform teleost Haplochromis burtoni. A Golgi study. Dev Brain Res 47:35–52Google Scholar
  1028. Wilm C, Fritzsch B (1990) Ipsilateral retinofugal projections in a percomorph bony fish: their experimental induction, specificity and maintenance. Brain Behav Evol 36:271–299PubMedGoogle Scholar
  1029. Wilm C, Fritzsch B (1992a) Evidence for a driving role of ingrowing axons for the shifting of older retinal terminals in the tectum of fish. J Neurobiol 23:149–162PubMed