Lampreys, Petromyzontoidea

  • R. Nieuwenhuys
  • C. Nicholson


The lampreys represent the most primitive group of presently living vertebrates. They are water inhabitants with elongated, eel-like bodies which lack paired fins (Fig. 10.1). In contrast to amphioxus, the head of the lamprey bears a number of special sense organs (nose, eyes, ears). The information gathered by these organs is relayed over the cranial nerves to centres in the enlarged rostral part of the CNS. There is a single nasal orifice high on top of the head and slightly behind this opening; a patch of pigment-free skin marks the position of the well-developed third or pineal eye. The animals lack jaws, having instead a large disc-shaped sucking mouth with many horny teeth. Many, but not all adult lampreys are predacious. The predacious varieties attach themselves to fish using their sucking mouths; then they produce a wound by rasping movements of a tongue-like structure which bears numerous sharp denticles. Finally, the lamprey ingests the blood and tissue fragments of its prey.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adam H (1956) Der III. Ventrikel und die mikroskopische Struktur seiner Wände bei Lampetra (Petromyzon) fluviatilis L und Myxine glutinosa L, nebst einigen Bemerkungen über das Infundibularorgan von Branchiostoma (Amphioxus) lanceolatum pall. In: Ariëns Kappers J (ed) Progress in neurobiology. Proceedings of the first international meeting of neurobiologists. Elsevier, Amsterdam, pp 146–158Google Scholar
  2. Addens JL (1933) The motor nuclei and roots of the cranial and first spinal nerves of vertebrates. I. Introduction and cylcostomes. Z Anat Entw Gesch 101:307–410Google Scholar
  3. Ahlborn F (1883) Untersuchungen über das Gehirn der Petromyzonten. Z Wiss Zool 39:191–294Google Scholar
  4. Alford S, Dubuc R (1993) Glutamate metabotropic receptormediated depression of synaptic inputs to lamprey reticulospinal neurones. Brain Res 605:175–179PubMedGoogle Scholar
  5. Alford S, Grillner S (1991) The involvement of GABAB receptors and coupled G-proteins in spinal GABAergic presynaptic inhibition. J Neurosci 11:3718–3726PubMedGoogle Scholar
  6. Alford S, Christenson J, Grillner S (1991) Presynaptic GABAA and GABAB receptor-mediated phasic modulation in axons of spinal motor interneurons. Eur J Neurosci 3:107–117PubMedGoogle Scholar
  7. Anadón R, De Miguel E, Gonzalez-Fuentes MJ, Rodicio C (1989) HRP study of the central components of the trigeminal nerve in the larval sea lamprey: organization and homology of the primary medullary and spinal nucleus of the trigeminus. J Comp Neurol 283:602–610PubMedGoogle Scholar
  8. Anadón R, Molist P, Pombal MA, Rodriguez-Moldes I, Rodico MC (1995) Marginal cells in the spinal cord of four elasmobranchs (Torpedo marmorata, T. torpedo, Raja undulata and Scyliorhinus canicula): evidence for homology with lamprey intraspinal stretch receptor neurons. Eur J Neurosci 7:934–943PubMedGoogle Scholar
  9. Ariëns Kappers CU (1920) Die vergleichende Anatomie des Nervensystems der Wirbeltiere und des Menschen, vol 1. Bohn, HaarlemGoogle Scholar
  10. Ariëns Kappers CU (1929) The evolution of the nervous system. Bohn, HaarlemGoogle Scholar
  11. Ariëns Kappers CU (1947) Anatomie comparée du système nerveux. Bohn, HaarlemGoogle Scholar
  12. Ariëns Kappers CU, Huber GC, Crosby EC (1936) The comparative anatomy of the nervous system of vertebrates, including man, vol 1. MacMillan, New YorkGoogle Scholar
  13. Baatrup E (1983a) Ciliated receptors in the pharyngeal terminal buds of larval Lampetra planeri (Bloch) (Cyclostomata). Acta Zool (Stockh) 64:67–75Google Scholar
  14. Baatrup E (1983b) Terminal buds in the branchial tube of the brook lamprey Lampetra planeri (Bloch) — putative respiratory monitors. Acta Zool (Stockh) 64:139–147Google Scholar
  15. Baatrup E (1985) Physiological studies on the pharyngeal terminal buds in the larval brook lamprey, Lampetra planeri (Bloch). Chem Senses 10:549–558Google Scholar
  16. Baatrup E, Døving KB (1985) Physiological studies on solitary receptors of the oral disc papillae in the adult brook lamprey, Lampetra planeri (Bloch). Chem Senses 10:559–566Google Scholar
  17. Barnard JW (1936) A phylogenetic study of the visceral afferent areas associated with the facial, glossopharyngeal, and vagus nerves, and their fiber connections. The efferent facial nucleus. J Comp Neurol 65:503–603Google Scholar
  18. Barthe JY, Grillner S (1995) Neurotensin-induced modulation of spinal neurons and fictive locomotion in the lamprey. J Neurophysiol 73:1308–1312PubMedGoogle Scholar
  19. Batueva IV, Shapovalov AI (1977a) Electrotonic and chemical EPSPs evoked in lamprey motoneurons by descending tract and dorsal root afferent stimulation. Neirofiziologiya 9:512–517 (English translation: Plenum, New York, 1978)Google Scholar
  20. Batueva IV, Shapovalov AI (1977b) Synaptic effects evoked in motoneurons by direct stimulation of single presynaptic fibers in the lamprey. Neirofiziologiya 9:390–396 (English translation: Plenum, New York, 1978)Google Scholar
  21. Batueva IV, Suderevskaya El, Vesselkin NP, Pierre J, Repérant J (1990) Localisation of GABA-immunopositive cells in the river lamprey spinal cord. J Hirnforsch 31:739–745PubMedGoogle Scholar
  22. Baumgarten HG (1972) Biogenic monoamines in the cyclostome and lower vertebrate brain. Prog Histochem Cytochem 4:1–90PubMedGoogle Scholar
  23. Belenky MA, Konstantinova MS, Polenov AL (1979a) The hypothalamo-hypophysial system of the lamprey, Lampetra fluviatilis L. II. The proximal neurosecretory contact region. Cell Tissue Res 204:319–331PubMedGoogle Scholar
  24. Belenky MA, Chetverukhin VK, Polenov AL (1979b) The hypothalamo-hypophysial system of the lamprey, Lampetra fluviatilis L. III. High resolution radioautography of monoaminergic structures in neurohemal regions. Cell Tissue Res 204:333–342PubMedGoogle Scholar
  25. Bennett MVL, Goodenough DA (1978) Gap junctions, electrotonic coupling, and intercellular communication. Neurosci Res Prog Bull 16:373–486Google Scholar
  26. Bergqvist H (1932) Zur Morphologie des Zwischenhirns bei niederen Wirbeltieren. Acta Zool 13:57–304Google Scholar
  27. Bergqvist H, Källén B (1953a) Studies on the topography of the migration areas in the vertebrate brain. Acta Anat 17:353–369Google Scholar
  28. Bergqvist H, Källén B (1953b) On the development of neuromeres to migration areas in the vertebrate cerebral tube. Acta Anat 18:66–73Google Scholar
  29. Bertolini B (1964) Ultrastructure of the spinal cord of the lamprey. J Ultrastruct Res 11:1–24PubMedGoogle Scholar
  30. Birnberger KL, Rovainen CM (1971) Behavioral and intracellular studies of a habituating fin reflex in the sea lamprey. J Neurophysiol 34:983–989PubMedGoogle Scholar
  31. Black D (1917) The motor nuclei of the cerebral nerves in phylogeny: a study of the phenomena of neurobiotaxis. I. Cyclostomi and pisces. J Comp Neurol 27:467–564Google Scholar
  32. Black D (1920) The motor nuclei of the cerebral nerves in phytogeny. III. Reptilia. J Comp Neurol 32:61–98Google Scholar
  33. Bodznick D, Northcutt RG (1981) Electroreception in lampreys: evidence that the earliest vertebrates were electroreceptive. Science 212:465–467PubMedGoogle Scholar
  34. Bodznick D, Preston DG (1983) Physiological characterization of electroreceptors in the lampreys Ichthyomyzon unicuspis and Petromyzon marinus. J Comp Physiol 152:209–217Google Scholar
  35. Bolliet V, Ali MA, Anctil M, Zachmann A (1993) Melatonin secretion in vitro from the pineal complex of the lamprey Petromyzon marinus. Gen Comp Endocrinol 89:101–106PubMedGoogle Scholar
  36. Bone Q (1960) The central nervous system in amphioxus. J Comp Neurol 115:27–64Google Scholar
  37. Bone Q (1963) The central nervous system. In: Brodai A, Fänge R (eds) The biology of myxine. Universitetsforlaget, Oslo, pp 50-91Google Scholar
  38. Bowtell G, Williams TL (1991) Anguilliform body dynamics — modelling the interaction between muscle activation and body curvature. Philos Trans R Soc Lond Ser B Biol Sci 334:385–390Google Scholar
  39. Brodin L, Grillner S (1990) The lamprey CNS in vitro, an experimentally amenable model for synaptic transmission and integrative functions. In: Jahnsen H (ed) Preparations of vertebrate central nervous system in vitro. Wiley, Chichester, UK, pp 103–153Google Scholar
  40. Brodin L, Buchanan JT, Hökfelt T, Grillner S, Verhofstad AAJ (1986) A spinal projection of 5-hydroxytryptamine neurons in the lamprey brainstem; evidence from combined retrograde tracing and immunohistochemistry. Neurosci Lett 67:53–57PubMedGoogle Scholar
  41. Brodin L, Christenson J, Grillner S (1987) Single sensory neurones activate excitatory amino acid receptors in the lamprey spinal cord. Neurosci Lett 75:75–79PubMedGoogle Scholar
  42. Brodin L, Buchanan JT, Hökfelt T, Grillner S, Rehfeld JF, Frey P, Verhofstad AAJ, Dockray GJ, Walsh JH (1988a) Immunohistochemical studies of cholecystokinin-like peptides and their relation to 5-HT CGRP, and bombesin immunoreactivities in the brainstem and spinal cord of lampreys. J Comp Neurol 271:1–18PubMedGoogle Scholar
  43. Brodin L, Grillner S, Dubuc R, Ohta Y, Kasicki S, Hokfelt T (1988b) Reticulospinal neurons in lamprey: transmitters, synaptic interactions and their role during locomotion. Arch Ital Biol 126:317–345PubMedGoogle Scholar
  44. Brodin L, Ohta Y, Hökfelt T, Grillner S (1989a) Further evidence for excitatory amino acid transmission in lamprey reticulospinal neurons: selective retrograde labeling with (3H)D-aspartate. J Comp Neurol 281:225–233PubMedGoogle Scholar
  45. Brodin L, Rawitch A, Taylor T, Ohta Y, Ring H, Hökfelt T, Grillner S, Terenius L (1989b) Multiple forms of pancreatic polypeptide-related compounds in the lamprey CNS: partial characterization and immunohistochemical localization in the brain stem and spinal cord. J Neurosci 9:3428–3442PubMedGoogle Scholar
  46. Brodin L, Hökfelt T, Grillner S, Panula P (1990a) Distribution of histaminergic neurons in the brain of the lamprey Lampetra fluviatilis as revealed by histamine-immunohistochemistry. J Comp Neurol 292:435–442PubMedGoogle Scholar
  47. Brodin L, Theordorsson E, Christenson J, Cullheim S, Hökfelt T, Brown JC, Buchan A, Panula P, Verhofstad AAJ, Goldstein M (1990b) Neurotensin-like peptides in the CNS of lampreys. Chromatographic characterization and immunohistochemical localization with reference to aminergic markers. Eur J Neurosci 2:1095–1109PubMedGoogle Scholar
  48. Brodin L, Dale N, Christenson J, Storm-Mathisen J, Hökfelt T, Grillner S (1990c) Three types of GABA-immunoreactive cells in the lamprey spinal cord. Brain Res 508:172–175PubMedGoogle Scholar
  49. Brodin L, Shupliakov O, Pieribone VA, Hellgren J, Hill RH (1994) The reticulospinal glutamate synapse in lamprey: plasticity and presynaptic variability. J Neurophysiol 72:592–604PubMedGoogle Scholar
  50. Bruckmoser P (1971) Elektrische Antworten im Vorderhirn von Lampetra fluviatilis L. bei Reizung des Nervus olfactorius. Z Vergl Physiol 75:69–85Google Scholar
  51. Buchanan JT (1982) Identification of interneurons with contralateral, caudal axons in the lamprey spinal cord: synaptic interactions and morphology. J Neurophysiol 47:961–975PubMedGoogle Scholar
  52. Buchanan JT (1986) Premotor interneurons in the lamprey spinal cord: morphology, synaptic interactions and activities during fictive swimming. In: Grillner S, Stein PSG, Stuard DG, Forssberg H, Herman RM (eds) Neurobiology of vertebrate locomotion. MacMillan, London, pp 321–334Google Scholar
  53. Buchanan JT (1993) Electrophysiological properties of identified classes of lamprey spinal neurons. J Neurophysiol 70:2313–2325PubMedGoogle Scholar
  54. Buchanan JT, Cohen AH (1982) Activities of identified interneurons, motoneurons, and muscle fibers during fictive swimming in the lamprey and effects of reticulospinal and dorsal cell stimulation. J Neurosphysiol 47:948–960Google Scholar
  55. Buchanan JT, Grillner S (1987) Newly identified ‘glutamate interneurons’ and their role in locomotion in the lamprey spinal cord. Science 236:312–314PubMedGoogle Scholar
  56. Buchanan JT, Grillner S (1988) A new class of small inhibitory interneurones in the lamprey spinal cord. Brain Res 438:404–407PubMedGoogle Scholar
  57. Buchanan JT, Grillner S (1991) 5-Hydroxytryptamine depresses reticulospinal excitatory postsynaptic potentials in motoneurons of the lamprey. Neurosci Lett 112:71–74Google Scholar
  58. Buchanan JT, Kasicki S (1995) Activities of spinal neurons during brain stem-dependent fictive swimming in Lamprey. J Neurophysiol 73:80–87PubMedGoogle Scholar
  59. Buchanan JT, Brodin L, Dale N, Grillner S (1987a) Reticulospinal neurons activate excitatory amino acid receptors. Brain Res 408:321–325PubMedGoogle Scholar
  60. Buchanan JT, Brodin L, Hökfelt T, Van Dongen PAM, Grillner S (1987b) Survey of neuropeptide-like immunoreactivity in the lamprey spinal cord. Brain Res 408:299–302PubMedGoogle Scholar
  61. Buchanan JT, Grillner S, Cullheim S, Risling M (1989) Identification of excitatory interneurons contributing to generation of locomotion in lamprey: structure, pharmacology, and function. J Neurophysiol 62:59–69PubMedGoogle Scholar
  62. Bullock TH, Bodznick DA, Northcutt RG (1983) The phyloge-netic distribution of electroreception: evidence for convergent evolution of a primitive vertebrate sense modality. Brain Res Rev 6:25–46Google Scholar
  63. Bullock TH, Moore JK, Fields RD (1984) Evolution of myelin sheaths: both lamprey and hagfish lack myelin. Neurosci Lett 48:145–148PubMedGoogle Scholar
  64. Bundgaard M (1982) Brain barrier systems in the lamprey. I. Ultrastructure and permeability of cerebral blood vessels. Brain Res 240:55–64PubMedGoogle Scholar
  65. Bundgaard M, Van Deurs B (1982) Brain barrier systems in the lamprey. II. Ultrastructure and permeability of the choroid plexus. Brain Res 240:65–75PubMedGoogle Scholar
  66. Bussières N, Dubuc R (1992) Phasic modulation of vestibulospinal neuron activity during fictive locomotion in lampreys. Brain Res 575:174–179PubMedGoogle Scholar
  67. Bussières N, Dubuc R (1995) Morphology and axonal trajectories of vestibulospinal neurones in lampreys. Soc Neurosci Abstr 21:142Google Scholar
  68. Butler AB (1994) The evolution of the dorsal thalamus of jawed vertebrates, including mammals: cladistic analysis and a new hypothesis. Brain Res Rev 19:29–65PubMedGoogle Scholar
  69. Cheung R, Plisetskaya EM, Youson JH (1990) Distribution of two forms of somatostatin in the brain, anterior intestine, and pancreas of adult lampreys (Petromyzon marinus). Cell Tissue Res 262:283–292PubMedGoogle Scholar
  70. Chesler M (1986) Regulation of intracellular pH in reticulospinal neurones of the lamprey, Petromyzon marinus. J Physiol (Lond) 381:241–261Google Scholar
  71. Chesler M, Nicholson C (1985) Regulation of intracellular pH in vertebrate central neurons. Brain Res 325:313–316PubMedGoogle Scholar
  72. Christensen BN (1976) Morphological correlates of synaptic transmission in lamprey spinal cord. J Neurophysiol 39:197–212PubMedGoogle Scholar
  73. Christensen BN (1983) Distribution of electrotonic synapses on identified lamprey neurons: a comparison of a model prediction with an electron microscopic analysis. J Neurophysiol 49:705–716PubMedGoogle Scholar
  74. Christensen BN, Teubl WP (1979a) Estimates of cable parameters in lamprey spinal cord neurones. J Physiol (Lond) 297:299–318Google Scholar
  75. Christensen BN, Teubl WP (1979b) Localization of synaptic input on dendrites of a lamprey spinal cord neurone from physiological measurements of membrane properties. J Physiol (Lond) 297:319–333Google Scholar
  76. Christenson J, Boman A, Lagerbäck PA, Grillner S (1988a) The dorsal cell, one class ofprimary sensory neuron in the lamprey spinal cord. I. Touch, pressure but no nociception — a physiological study. Brain Res 440:1–8PubMedGoogle Scholar
  77. Christenson J, Lagerbäck PA, Grillner S (1988b) The dorsal cell, one class of primary sensory neuron in the lamprey spinal cord. II. A light-and electron-microscopical study. Brain Res 440:9–17PubMedGoogle Scholar
  78. Christenson J, Cullheim S, Grillner S, Hökfelt T (1990) 5-Hydroxytryptamine immunoreactive varicosities in the lamprey spinal cord have no synaptic specializations — an ultrastructural study. Brain Res 512:201–209PubMedGoogle Scholar
  79. Christenson J, Alford S, Grillner S, Hokfelt T (1991) Colocalized GABA and somatostatin use different ionic mechanisms to hyperpolarize target neurons in the lamprey spinal cord. Neurosci Lett 134:93–97PubMedGoogle Scholar
  80. Christenson J, Hill RH, Bongianni F, Grillner S (1993) Presence of low voltage activated calcium channels distinguishes touch from pressure sensory neurons in the lamprey spinal cord. Brain Res 608:58–66PubMedGoogle Scholar
  81. Clark WB (1906) The cerebellum of Petromyzon fluviatilis. J Anat 40:318–325Google Scholar
  82. Cohen AH, Wallén P (1980) The neuronal correlate of locomotion in fish. ‘Fictive swimming’ induced in an in vitro preparation of the lamprey spinal cord. Exp Brain Res 41:11–18PubMedGoogle Scholar
  83. Cohen AH, Holmes PJ, Rand RH (1982) The nature of the coupling between segmental oscillators of the lamprey spinal generator for locomotion: a mathematical model. J Math Biol 13:345–369PubMedGoogle Scholar
  84. Cole WC, Youson JH (1981) The effect of pinealectomy, continuous light, and continuous darkness on metamorphosis of anadromous sea lampreys, Petromyzon marinus L. J Exp Zool 218:397–404PubMedGoogle Scholar
  85. Cole WC, Youson JH (1982) Morphology of the pineal complex of the anadromous sea lamprey, Petromyzon marinus L. Am J Anat 165:131–63PubMedGoogle Scholar
  86. Crim JW, Urano A, Gorbman A (1979) Immunocytochemical studies of luteinizing hormone-releasing hormone in brains of agnathan fishes. I. Comparisons of adult pacific lamprey (Entosphenus tridentata) and the pacific hagfish (Eptatretus stouti). Gen Comp Endocrinol 37:294–305PubMedGoogle Scholar
  87. Davis GR Jr, McClellan AD (1993) Time course of anatomical regeneration of descending brainstem neurons and behavioral recovery in spinal-transected lamprey. Brain Res 602:131–137PubMedGoogle Scholar
  88. Davis GR Jr, McClellan AD (1994a) Long distance axonal regeneration of identified lamprey reticulospinal neurons. Exp Neurol 127:94–105PubMedGoogle Scholar
  89. Davis GR Jr, McClellan AD (1994b) Extent and time course of restoration of descending brainstem projections in spinal cord-transected lamprey. J Comp Neurol 344:65–82PubMedGoogle Scholar
  90. Davis GR Jr, Troxel MT, Kohler VJ, Grossmann EM, McClellan AD (1993) Time course of locomotor recovery and functional regeneration in spinal-transected lamprey: kinematics and electromyography. Exp Brain Res 97:83–95PubMedGoogle Scholar
  91. Deliagina TG (1995) Vestibular compensation in the lamprey. Neuroreport 6:2599–2603PubMedGoogle Scholar
  92. Deliagina TG, Orlovsky GN, Grillner S, Wallén P (1992a) Vestibular control of swimming in lamprey. II. Characteristics of spatial sensitivity of reticulospinal neurons. Exp Brain Res 90:489–498PubMedGoogle Scholar
  93. Deliagina TG, Orlovsky GN, Grillner S, Wallén P (1992b) Vestibular control of swimming in lamprey. III. Activity of vestibular afferents: convergence of vestibular inputs on reticulospinal neurons. Exp Brain Res 90:499–507PubMedGoogle Scholar
  94. Deliagina TG, Grillner S, Orlovsky GN, Ullén F (1993) Visual input affects the response to roll in reticulospinal neurons of the lamprey. Exp Brain Res 95:421–428PubMedGoogle Scholar
  95. Deliagina TG, Ullén F, Gonzalez MJ, Ehrsson H, Orlovsky GN, Grillner S (1995) Initiation of locomotion by lateral line photoreceptors in lamprey: behavioural and neurophysiological studies. J Exp Biol 198:2581–2591PubMedGoogle Scholar
  96. De Miguel E, Anadón R (1987) The development of the retina and the optic tectum of Petromyzon marinus L. J Hirnforsch 28:445–456PubMedGoogle Scholar
  97. De Miguel E, Rodicio MC, Anadón R (1990) Organization of the visual system in larval lampreys: an HRP study. J Comp Neurol 302:529–542PubMedGoogle Scholar
  98. Dickson DH, Collard TR (1979) Retinal development in the lamprey (Petromyzon marinus L): premetamorphic ammo-coete eye. J Anat 154:321–336Google Scholar
  99. Dubuc R, Grillner S (1987) Spinal cord input to reticulospinal neurones in the lamprey. Acta Physiol Scand 129:28AGoogle Scholar
  100. Dubuc R, Bongianni F, Ohta Y, Grillner S (1993a) Dorsal root and dorsal column mediated synaptic inputs to reticulospinal neurons in lampreys: involvement of glutamatergic, glycinergic, and GABAergic transmission. J Comp Neurol 327:251–259PubMedGoogle Scholar
  101. Dubuc R, Bongianni F, Ohta Y, Grillner S (1993b) Anatomical and physiological study of brainstem nuclei relaying dorsal column inputs in lampreys. J Comp Neurol 327:260–270PubMedGoogle Scholar
  102. Ebbesson SOE (1969) Brain stem afferents from the spinal cord in a sample of reptilian and amphibian species. Ann NY Acad Sci 167:80–101Google Scholar
  103. Ebbesson SOE, Hodde KC (1981) Ascending spinal systems in the nurse shark, Ginglymostoma cirratum. Cell Tissue Res 216:313–331PubMedGoogle Scholar
  104. Ebbesson SOE, Northcutt RG (1976) Neurology of anamniotic vertebrates. In: Masterton RB, Bitterman ME, Campbell CBG, Hotton N (eds) Evolution of brain and behavior in vertebrates. Erlbaum, Hilsdale, pp 115–146Google Scholar
  105. Eddy JMP (1969) Metamorphosis and the pineal complex in the brook lamprey, Lampetra planeri. J Endocrinol 44:451–452PubMedGoogle Scholar
  106. Eddy JMP (1972) The pineal complex. In: Hardisty MW, Potter IC (eds) The biology of lampreys, vol 2. Academic, London, pp 91–103Google Scholar
  107. Edinger L (1908) Vorlesungen über den Bau der Nervösen Zentralorgane. Vogel, LeipzigGoogle Scholar
  108. Eisthen H, Northcutt RG (1996) Silver lampreys (Ichthyomyzon unicuspis) lack a gonadotrophin-releasing hormoneand FMRFamide-immunoreactive terminal nerve. J Comp Neurol 370:159–172PubMedGoogle Scholar
  109. El Manira A, Tegnér J, Grillner S (1994) Calcium-dependent potassium channels play a critical role for burst termination in the locomotor network in lamprey. J Neurophysiol 72:1852–1861PubMedGoogle Scholar
  110. El Manira A, Shupliakov O, Fagerstadt P, Grillner S (1996) Monosynaptic input from cutaneous sensory afferents to fin motoneurons in lamprey. J Comp Neurol 369:533–542PubMedGoogle Scholar
  111. Faber DS, Korn H (1978) Neurobiology of the Mauthner cell. Raven, New YorkGoogle Scholar
  112. Fahrenholz C (1936) Die sensiblen Einrichtungen der Neunaugenhaut. Z Mikrosk Anat Forsch 40:323–380Google Scholar
  113. Finger TE, Rovainen CM (1978) Retrograde HRP labeling of the oculomotoneurons in adult lampreys. Brain Res 154:123–127PubMedGoogle Scholar
  114. Finger TE, Rovainen CM (1982) Spinal and medullary dorsal cell axons in the trigeminal nerve in lampreys. Brain Res 240:331–333PubMedGoogle Scholar
  115. Fite KV (1985) Pretectal and accessory-optic visual nuclei of fish, amphibia and reptiles: theme and variations. Brain Behav Evol 26:71–90PubMedGoogle Scholar
  116. Foster RG, Garcia-Fernández JM, Provencio I, DeGrip WJ (1993) Opsin localization and chromophore retinoids identified within the basis brain of the lizard Anolis carolinensis. J Comp Physiol 172:33–45Google Scholar
  117. Freud S (1877) Über den Ursprung der hinteren Nervenwurzeln im Rückenmark von ammocoetes (Petromyzon planeri). Sitzungsber Akad Wiss Wien 75:15–30Google Scholar
  118. Freud S (1878) Über Spinalganglien und Rückenmark des Petromyzon. Sitzungsber Akad Wiss Wien 78:81–167Google Scholar
  119. Fritzsch B, Northcutt RG (1993) Origin and migration of trochlear, oculomotor and abducent motor neurons in Petromyzon marinus L. Dev Brain Res 74:122–126Google Scholar
  120. Fritzsch B, Sonntag R (1988) The trochlear motoneurons of lampreys (Lampetra fluviatilis): location, morphology and numbers as revealed with horseradish peroxidase. Cell Tissue Res 252:223–229PubMedGoogle Scholar
  121. Fritzsch B, Crapon de Caprona MD, Wachtler K, Kortje KH (1984) Neuroanatomical evidence for electroreception in lampreys. Z Naturforsch, Section C: Biosci 39:856–858Google Scholar
  122. Fritzsch B, Dubuc R, Ohta Y, Grillner S (1989) Efferents to the labyrinth of the river lamprey (Lampetra fluviatilis) as revealed with retrograde tracing techniques. Neurosci Lett 96:241–246PubMedGoogle Scholar
  123. Fritzsch B, Sonntag R, Dubuc R, Ohta Y, Grillner S (1990) Organization of the six motor nuclei innervating the ocular muscles in lamprey. J Comp Neurol 294:491–506PubMedGoogle Scholar
  124. Gage SH (1928) The lampreys of New York State. Life history and economics. Biological survey of the Oswego river system, supplement to the 17th annual report, New York State Conservation Dept, 1927. Lyon, Albany, pp 158-191Google Scholar
  125. Garcia-Fernández JM, Foster RG (1994) Immunocytochemical identification of photoreceptor proteins in hypothalamic cerebrospinal fluid-contacting neurons of the larval lamprey (Petromyzon marinus). Cell Tissue Res 275:319–326Google Scholar
  126. Gilland E, Baker R (1995) Organization of rhombomeres and brainstem efferent neuronal populations in larval sea lamprey, Petromyzon marinus. Soc Neurosci Abstr 21:779Google Scholar
  127. González MA, Anadón R (1992) Primary projections of the lateral line nerves in larval sea lamprey, Petromyzon marinus L: an HRP study. J Hirnforsch 33:185–194PubMedGoogle Scholar
  128. Goossens N, Dierickx K, Vandesande F (1977) Immunocytochemical demonstration of the hypothalamo-hypophysial vasotocinergic system of Lampetra fluviatilis. Cell Tissue Res 177:317–323PubMedGoogle Scholar
  129. Grillner S, Matsushima T (1991) The neural network underlying locomotion in lamprey — synaptic and cellular mechanisms. Neuron 7:1–15PubMedGoogle Scholar
  130. Grillner S, McClellan A, Sigvardt K (1982) Mechanosensitive neurons in the spinal cord of the lamprey. Brain Res 235:169–173PubMedGoogle Scholar
  131. Grillner S, Williams T, Lagerback PA (1984) The edge cell, a possible intraspinal mechanoreceptor. Science 223:500–503PubMedGoogle Scholar
  132. Grillner S, Wallén P, Brodin L, Lansner A (1991) Neuronal network generating locomotor behavior in lamprey: circuitry, transmitters, membrane properties, and simulation. Annu Rev Neurosci 14:169–199PubMedGoogle Scholar
  133. Grillner S, Deliagina T, Ekeberg Ö, El Manira A, Hill RH, Lansner A, Orlovsky GN, Wallén P (1995) Neural networks that co-ordinate locomotion and body orientation in lamprey. Trends Neurosci 18:270–279PubMedGoogle Scholar
  134. Groos G (1982) The comparative physiology of extraocular photoreception. Experientia 38:989–1128PubMedGoogle Scholar
  135. Hagevik A, McClellan AD (1994a) Role of excitatory amino acids in brainstem activation of spinal locomotor networks in larval lamprey. Brain Res 636:147–152PubMedGoogle Scholar
  136. Hagevik A, McClellan AD (1994b) Coupling of spinal locomotor networks in larval lamprey revealed by receptor blockers for inhibitory amino acids: Neurophysiology and computer modeling. J Neurophysiol 72:1810–1829PubMedGoogle Scholar
  137. Hardisty MW (1979) Biology of the cyclostomes. Chapman and Hall, LondonGoogle Scholar
  138. Hardisty MW, Potter IC (eds) The biology of lampreys, vol 4A. Academic, LondonGoogle Scholar
  139. Hardisty MW, Rovainen CM (1982) Morphological and functional aspects of the muscular system. In: Hardisty MW, Potter IC (eds) The biology of lampreys, vol 4A. Academic, London, pp 137–231Google Scholar
  140. Harris-Warrick RM, Cohen AH (1985) Serotonin modulates the central pattern generator for locomotion in the isolated lamprey spinal cord. J Exp Biol 116:27–46PubMedGoogle Scholar
  141. Heier P (1948) Fundamental principles in the structure of the brain. A study of the brain of Petromyzon fluviatilis. Acta Anat [Suppl] VI:1–213Google Scholar
  142. Herrick CJ (1948) The brain of the tiger salamander. University of Chicago Press, ChicagoGoogle Scholar
  143. Herrick CJ, Obenchain JB (1913) Notes on the anatomy of a cyclostome brain: Ichthyomyzon concolor. J Comp Neurol 23:635–675Google Scholar
  144. Hibbard E (1963a) The vascular supply to the central nervous system of the larval lamprey. Am J Anat 113:93–99PubMedGoogle Scholar
  145. Hibbard E (1963b) Regeneration in the severed spinal cord of chordate larvae of Petromyzon marinus. Exp Neurol 7:175–185Google Scholar
  146. Hofer H (1963) Neuere Ergebnisse zur Kenntnis des Subkommissuralorganes, des Reissnerschen Fadens und der Massa caudalis. Verh Zool Ges 431-440Google Scholar
  147. Hofer H, Meinel W, Erhardt H, Wolter A (1984) Preliminary electron-microscopical observations on the ampulla caudalis and the discharge of the material of Reissner’s fibre into the capillary system of the terminal part of the tail of ammocoetes (Agnathi). Gegenbaurs Morphol Jahrb (Leipz) 130(1):77–110Google Scholar
  148. Hoheisel G, Rühle HJ, Sterba G (1978) The reticular formation of lampreys (Petromyzonidae) — a target area for exohypothalamic vasotocinergic fibres. Cell Tissue Res 189:331–345PubMedGoogle Scholar
  149. Holmgren N (1922) Points of view concerning forebrain morphology in lower vertebrates. J Comp Neurol 34:391–440Google Scholar
  150. Homma S (1975) Velar motoneurons of lamprey larvae. J Comp Physiol 104:175–183Google Scholar
  151. Homma S (1979) Conductance changes during bath application of ß-alanine and taurine in giant interneurons of the isolated lampreys spinal cord. Brain Res 173:287–293PubMedGoogle Scholar
  152. Homma S (1981) Effects of DL-aminoadipate on synaptic transmission in spinal interneurones of the lamprey. J Comp Physiol 143:423–426Google Scholar
  153. Homma S, Rovainen CM (1978) Conductance increases produced by glycine and γ-aminobytyric acid in lamprey interneurons. J Physiol (Lond) 279:231–252Google Scholar
  154. Huard H, Lund JP, Dubuc R (1995) A study of trigeminal premotor neurones in lampreys. Soc Neurosci Abstr 21:142Google Scholar
  155. Hugosson R (1957) Morphologic and experimental studies on the development and significance of the rhombencephalic longitudinal cell columns. Thesis, LundGoogle Scholar
  156. Iwahori N, Kiyota E, Nakamura K (1987) A Golgi study on the olfactory bulb in the lamprey, Lampetra japonica. Neurosci Res 5:126–139PubMedGoogle Scholar
  157. Jansen J (1930) The brain of Myxine glutinosa. J Comp Neurol 49:359–507Google Scholar
  158. Johnels AG (1958) On the dorsal ganglion cells of the spinal cord in lampreys. Acta Zool 39:201–216Google Scholar
  159. Johnston JB (1902) The brain of Petromyzon. J Comp Neurol 12:2–86Google Scholar
  160. Johnston JB (1905) The cranial nerve components of Petromyzon. Morphol Jahrb 34:149–203Google Scholar
  161. Johnston JB (1912) The telencephalon in cyclostomes. J Comp Neurol 22:341–404Google Scholar
  162. Joss JMP (1973) The pineal complex, melatonin, and color change in the lamprey Lampetra. Gen Comp Endocrinol 21:188–195PubMedGoogle Scholar
  163. Jung R, Kiemel T, Cohen AH (1996) Dynamic behavior of a neural network model of locomotor control in the lamprey. J Neurophysiol 75:1074–1086PubMedGoogle Scholar
  164. Karamian AI, Vessekin NP, Agayan AL (1984) Electrophysiological and behavioral studies of the optic tectum in cyclostomes, chap 2. In: Vanegas (ed) Comparative neurology of the optic tectum. Plenum, New YorkGoogle Scholar
  165. Kasicki S, Grillner S (1986) Müller cells and other reticulospinal neurones are phasically active during fictive locomotion in the isolated nervous system of the lamprey. Neurosci Lett 69:239–243PubMedGoogle Scholar
  166. Kasicki S, Grillner S, Ohta Y, Dubuc R, Brodin L (1989) Phasic modulation of reticulospinal neurones during fictive locomotion and other types of spinal motor activity in lamprey. Brain Res 484:203–216PubMedGoogle Scholar
  167. Kennedy MC, Rubinson K (1977) Retinal projections in larval, transforming and adult sea lamprey, Petromyzon marinus. J Comp Neurol 171:465–480PubMedGoogle Scholar
  168. Kennedy MC, Rubinson K (1978) The structure of the optic tectum in the sea lamprey, Petromyzon marinus. Anat Rec 190:441–442Google Scholar
  169. Kennedy M, Rubinson K (1984) Development and structure of the lamprey optic tectum. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum, New York, pp 1–13Google Scholar
  170. Kim YS, Stumpf WE, Reid FA, Sar M, Selzer ME (1980) Estrogen target cells in the forebrain of river lamprey Ichthyomyzon unicuspis. J Comp Neurol 191:607–613PubMedGoogle Scholar
  171. Kim YS, Stumpf WE, Sar M, Reid FA, Selzer ME, Epple AW (1981) Autoradiographic studies or estrogen target cells in the forebrain of larval lamprey, Petromyzon marinus. Brain Res 210:53–60PubMedGoogle Scholar
  172. King JC, Sower SA, Anthony ELP (1988) Neuronal systems immunoreactive with antiserum to lamprey gonadotropin-releasing hormone in the brain of Petromyzon marinus. Cell Tissue Res 253:1–8PubMedGoogle Scholar
  173. Kishida R, Koyama H, Goris RC (1988) Giant lateral-line afferent terminals in the electroreceptive dorsal nucleus of lampreys. Neurosci Res 6:83–87PubMedGoogle Scholar
  174. Kleerekoper H (1972) The sense organs. In: Hardisty MW, Potter IC (eds) The biology of lampreys, vol 2. Academic, London, pp 373–404Google Scholar
  175. Kosareva AA (1980) Retinal projections in lamprey (Lampetra fluviatilis). J Hirnforsch 21:243–256PubMedGoogle Scholar
  176. Koyama H, Kishida R, Goris RC, Kusunoki T (1987) Organization of sensory and motor nuclei of the trigeminal nerve in lampreys. J Comp Neurol 264:437–448PubMedGoogle Scholar
  177. Koyama H, Kishida R, Goris RC, Kusunoki T (1989) Afferent and efferent projections of the VIIIth cranial nerve in the lamprey Lampetra japonica. J Comp Neurol 280:663–671PubMedGoogle Scholar
  178. Koyama H, Kishida R, Goris RC, Kusunoki T (1990) Organization of the primary projections of the lateral line nerves in the lamprey Lampetra japonica. J Comp Neurol 295:277–289PubMedGoogle Scholar
  179. Koyama H, Kishida R, Goris R, Kusunoki T (1993) Giant terminals in the dorsal octavolateralis nucleus of lampreys. J Comp Neurol 335:245–251PubMedGoogle Scholar
  180. Kuhlenbeck H (1929) Über die Grundbestandteile des Zwischenhirnbauplans der Anamnier. Morphol Jahrb 63:50–95Google Scholar
  181. Kuhlenbeck H (1956) Die Formbestandteile der Regio praetectalis des Anamnier-Gehirns und ihre Beziehungen zum Hirnbauplan. Fol Anat Jpn 28:23–44Google Scholar
  182. Kutschin K (1863) Über den Bau des Rückenmarkes der Neunaugen (in Russian). Thesis, Kasan. (Reviewed by L Stieda.) Arch Mikr Anat 2:525–530Google Scholar
  183. Larsell O (1947a) The cerebellum of myxinoids and petromyzonts, including developmental stages in the lampreys. J Comp Neurol 86:395–445PubMedGoogle Scholar
  184. Larsell O (1947b) The nucleus of the IVth nerve in petromyzonts. J Comp Neurol 86:447–466PubMedGoogle Scholar
  185. Larsell O (1967) The comparative anatomy and histology of the cerebellum from myxinoids through birds. University of Minnesota Press, MinneapolisGoogle Scholar
  186. Lehmenkühler A, Syková E, Svoboda J, Zilles K, Nicholson C (1993) Extracellular space parameters in the rat neocortex and subcortical white matter during postnatal development determined by diffusion analysis. Neuroscience 55:339–351PubMedGoogle Scholar
  187. Leonhardt H (1980) Organum subcommissurale. In: Oksche A (ed) Handbuch der Mikroskopischen Anatomie des Menschen, vol 4: Nervensystem, part 10: Neuroglia I. Springer, Berlin Heidelberg New York, pp 472–504Google Scholar
  188. Leonard JP, Wickelgren WO (1986) Prolongation of calcium action potentials by γ-aminobutyric acid in primary sensory neurones of lamprey. J Physiol (Lond) 375:481–497Google Scholar
  189. Lowenstein O (1970) The electrophvsiological study of the responses of the isolated labyrinth of the lamprey (Lampetra fluviatilis L) to angular acceleration, tilting and mechanical vibration. Proc R Soc Lond [Biol] 174:419–434Google Scholar
  190. Lowenstein O, Osborne MP, Thornhill RA (1968) The anatomy and ultrastructure of the labyrinth of the lamprey (Lampetra fluviatilis L). Proc R Soc Lond [Biol] 170:113–134Google Scholar
  191. Lurie DI, Pijak DS, Selzer ME (1994) The structure of reticulospinal axon growth cones and their cellular environment during regeneration in the lamprey spinal cord. J Comp Neurol 344:559–580PubMedGoogle Scholar
  192. Martin RJ (1979) A study of the morphology of the large reticulospinal neurons of the lamprey ammocoete by intracellular injection of procion yellow. Brain Behav Evol 16:1–18PubMedGoogle Scholar
  193. Martin RJ, Bowsher D (1977) An electrophysiological investigation of the projection of the intramedullary primary afferent cells of the lamprey ammocoete. Neurosci Lett 5:39–43PubMedGoogle Scholar
  194. Martin AR, Pilar G (1963) Dual mode of synaptic transmission in the avian ciliary ganglion. J Physiol (Lond) 168:443–463Google Scholar
  195. Martin AR, Ringham GL (1975) Synaptic transfer at a vertebrate central nervous system synapse. J Physiol (Lond) 25:409–426Google Scholar
  196. Martin AR, Wickelgren WO (1971) Sensory cells in the spinal cord of the sea lamprey. J Physiol (Lond) 212:65–83Google Scholar
  197. Martin AR, Wickelgren WO, Berànek R (1970) Effects of iontophoretically applied drugs on spinal interneurons of the lamprey. J Physiol (Lond) 207:653–665Google Scholar
  198. Matsushima T, Grillner S (1990) Intersegmental coordination of undulatory movements — a “trailing oscillator” hypothesis. Neuroreport 1:97–100PubMedGoogle Scholar
  199. Matsushima T, Grillner S (1992) Neural mechanisms of intersegmental coordination in lamprey: local excitability changes modify the phase coupling along the spinal cord. J Neurophysiol 67:373–388PubMedGoogle Scholar
  200. Matsushima T, Tegnér J, Hill RH, Grillner S (1993) GABAB receptor activation causes a depression of low-voltage and high-voltage activated Ca2+ currents, postinhibitory rebound, and postspike afterhyperpolarization in lamprey neurons. J Neurophysiol 70:2606–2619PubMedGoogle Scholar
  201. Matthews G, Wickelgren WO (1978) Trigeminal sensory neurons of the sea lamprey. J Comp Physiol 123:329–333Google Scholar
  202. Mayer F (1897) Das Centralnervensystem von Ammocoetes. I. Vorder-, Zwischen-und Mittelhirn. Anat Anz 13:649–657Google Scholar
  203. McClellan AD (1984) Descending control and sensory gating of ‘fictive’ swimming and turning responses elicited in an in vitro preparation of the lamprey brainstem/spinal cord. Brain Res 302:151–162PubMedGoogle Scholar
  204. McClellan AD (1988a) Functional regeneration of descending brainstem command pathway for locomotion demonstrated in the in vitro lamprey CNS. Brain Res 448:339–345PubMedGoogle Scholar
  205. McClellan AD (1988b) Brainstem command system for locomotion in the lamprey: localization of descending pathways in the spinal cord. Brain Res 457:338–349PubMedGoogle Scholar
  206. McClellan AD (1992) Functional regeneration and recovery of locomotor activity in spinally transected lamprey. J Exp Zool 261:274–287PubMedGoogle Scholar
  207. McClellan AD (1994) Time course of locomotor recovery and functional regeneration in spinal cord-transected lamprey: in vitro preparations. J Neurophysiol 72:847–860PubMedGoogle Scholar
  208. McClellan AD, Grillner S (1984) Activation of ‘fictive swimming’ by electrical microstimulation of brainstem locomotor regions in an in vitro preparation of the lamprey central nervous system. Brain Res 300:357–361PubMedGoogle Scholar
  209. McClellan AD, Jang WC (1993) Mechanosensory inputs to the central pattern generators for locomotion in the lamprey spinal cord: resetting, entrainment, and computer modeling. J Neurophysiol 70:2442–2454PubMedGoogle Scholar
  210. McKibben PS (1911) The nervus terminalis in urodele Amphibia. J Comp Neurol 21:261–310Google Scholar
  211. McPherson DR, Kemnitz CP (1994) Modulation of lamprey fictive swimming and motoneuron physiology by dopamine, and its immunocytochemical localization in the spinal cord. Neurosci Lett 166:23–26PubMedGoogle Scholar
  212. Meiniel A (1980) Ultrastructure of serotonin-containing cells in the pineal organ of Lampetra planeri (Petromyzontidae). Cell Tissue Res 207:407–427PubMedGoogle Scholar
  213. Meiniel A (1981) New aspects of the phylogenetic evolution of sensory cell lines in the vertebrate pineal complex. In: Oksche A, Pévet P (eds) The pineal organ: photobiology — biochronometry — endocrinology. Elsevier, Amsterdam, pp27-48Google Scholar
  214. Meiniel A, Hartwig HG (1980) Indoleamines in the pineal complex of Lampetra planeri (Petromyzontidae): a fluorescence microscopic and microspectrofuorimetric study. J Neural Transm 48:65–83Google Scholar
  215. Meilen N, Kiemel T, Cohen AH (1995) Correlational analysis of fictive swimming in the lamprey reveals strong functional intersegmental coupling. J Neurophysiol 73:1020–1030Google Scholar
  216. Merrick SA, Pleasure SJ, Lurie DI, Pijak DS, Selzer ME, Lee VMY (1995) Glial cells of the lamprey nervous system contain keratin-like proteins. J Comp Neurol 355:199–210PubMedGoogle Scholar
  217. Moore LE, Buchanan JT (1993) The effects of neurotransmitters on the integrative properties of spinal neurons in the lamprey. J Exp Biol 175:89–114PubMedGoogle Scholar
  218. Morita Y, Tabata M, Tamotsu S (1985) Intracellular response and input resistance change of pineal photoreceptors and ganglion cells. Neurosci Res [Suppl] 2:79–88Google Scholar
  219. Morita Y, Tabata M, Uchida K, Samejima M (1992) Pinealdependent locomotor activity of lamprey, Lampetra japonica, measured in relation to LD cycle and circadian rhythmicity. J Comp Physiol A 171:555–562Google Scholar
  220. Münz H, Claas B, Stumpf WE, Jennes L (1982) Centrifugal innervation of the retina by luteinizing hormone-releasing hormone (LHRH)-immunoreactive telencephalic neurons in teleostean fishes. Cell Tissue Res 222:313–323PubMedGoogle Scholar
  221. Nakao T, Ishizawa A (1982) An electron microscopic study of autonomic nerve cells in the cloacal region of the lamprey, Lampetra japonica. J Neurocytol 11:517–532PubMedGoogle Scholar
  222. Nakao T, Ishizawa A (1987a) Development of the spinal nerves in the lamprey: I. Rohon-Beard cells and interneurons. J Comp Neurol 256:342–355PubMedGoogle Scholar
  223. Nakao T, Ishizawa A (1987b) Development of the spinal nerves in the lamprey: II. Outflows from the spinal cord. J Comp Neurol 256:356–368PubMedGoogle Scholar
  224. Nakao T, Ishizawa A (1987c) Development of the spinal nerves in the lamprey: III. Spinal ganglia and dorsal roots in 26-day (13 mm) larvae. J Comp Neurol 256:369–385PubMedGoogle Scholar
  225. Nakao T, Ishizawa A (1987d) Development of the spinal nerves of the larval lamprey: IV. Spinal nerve roots of 21-mm larval and adult lampreys, with special reference to the relation of meninges with the root sheath and the perineurium. J Comp Neurol 256:386–399PubMedGoogle Scholar
  226. Nakao T, Suzuki S (1978) Sympathetic nerves in the branchial region of lamprey, Lampetra japonica. Acta Anat Nippon 53:51–52Google Scholar
  227. Nakao T, Suzuki S (1980) The structure and innervation of the cloacal region of lamprey. Acta Anat Nippon 55:438Google Scholar
  228. Nieuwenhuys R (1967a) Comparative anatomy of olfactory centres and tracts. Prog Brain Res 23:1–64PubMedGoogle Scholar
  229. Nieuwenhuys R (1967b) Comparative anatomy of the cerebellum. Prog Brain Res 25:1–93PubMedGoogle Scholar
  230. Nieuwenhuys R (1972) Topological analysis of the brain stem of the lamprey Lampetra fluviatilis. J Comp Neurol 145:165–178PubMedGoogle Scholar
  231. Nieuwenhuys R (1977) The brain of the lamprey in a comparative perspective. Ann NY Acad Sci 299:97–145PubMedGoogle Scholar
  232. Northcutt R (1979a) Experimental determination of the primary trigeminal projections in lampreys. Brain Res 163:323–327PubMedGoogle Scholar
  233. Northcutt RG (1979b) Central projections of the eighth cranial nerve in lampreys. Brain Res 167:163–167PubMedGoogle Scholar
  234. Northcutt RG, Przybylski RJ (1973) Retinal projections in the lamprey Petromyzon marinus L. Anat Rec 175:400Google Scholar
  235. Northcutt RG, Puzdrowski RL (1988) Projections of the olfactory bulb and nervus terminalis in the silver lamprey. Brain Behav Evol 32:96–107PubMedGoogle Scholar
  236. Nortcutt RG, Wicht H (1996) Afferent and efferent connections of the lateral and medial palloia of the silver lamprey. Brain Behav Evol (in press)Google Scholar
  237. Nozaki M (1985) Tissue distribution of hormonal peptides in primitive fishes. In: Foreman D, Gorbman A, Dodd JM, Olsson R (eds) Evolutionary biology of primitive fishes. Plenum, New York, pp 433–454Google Scholar
  238. Nozaki M, Gorbman A (1984) Distribution of immunoreactive sites for several components of pro-opiocortin in the pituitary and brain of adult lampreys, Petromyzon marinus and Entosphenus tridentatus. Gen Comp Endocrinol 53:335–352PubMedGoogle Scholar
  239. Nozaki M, Gorbman A (1986) Occurrence and distribution of substance P-related immunoreactivity in the brain of adult lampreys. Gen Comp Endocrinol 62:217–229PubMedGoogle Scholar
  240. Öhman P (1977) Fine structure of the optic nerve of Lampetra fluviatilis (Cyclostomi). Vision Res 17:719–722PubMedGoogle Scholar
  241. Ohta Y, Grillner S (1989) Monosynaptic excitatory amino acid transmission from the posterior rhombencephalic reticular nucleus to spinal neurons involved in the control of locomotion in lamprey. J Neurophysiol 62:1079–1089PubMedGoogle Scholar
  242. Ohta Y, Brodin L, Grillner S, Hökfelt T, Walsh JH (1988) Possible target neurons of the reticulospinal cholecystokinin (CCK) projection to the lamprey spinal cord: immunohistochemistry combined with intracellular staining with lucifer yellow. Brain Res 445:400–403PubMedGoogle Scholar
  243. Ohta Y, Dubuc R, Grillner S (1991) A new population of neurons with crossed axons in the lamprey spinal cord. Brain Res 564:143–148PubMedGoogle Scholar
  244. Ohtomi M, Fujii K, Kobayashi H (1989) Distribution of FMRFamide-like immunoreactivity in the brain and neurohypophysis of the lamprey, Lampetra japonica. Cell Tissue Res 256:581–584PubMedGoogle Scholar
  245. Oksche A (1969) The subcommissural organ. J Neurol Visc Relat [Suppl] 9:111–139Google Scholar
  246. Olsson R (1955) Structure and development of Reissner’s fibre in the caudal end of amphioxus and some lower vertebrates. Acta Zool (Stockh) 36:167–198Google Scholar
  247. Olsson R (1958) Studies on the subcommissural organ. Acta Zool (Stockh) 39:71–102Google Scholar
  248. Onstott D, Elde R (1986) Immunohistochemical localization of urotensin I/corticotropin-releasing factor, urotensin II, and serotonin immunoreactivities in the caudal spinal cord of nonteleost fishes. J Comp Neurol 249:205–225PubMedGoogle Scholar
  249. Orlovsky GN, Deliagina TG, Wallén P (1992) Vestibular control of swimming in lamprey. I. Responses of reticulospinal neurons to roll and pitch. Exp Brain Res 90:479–488PubMedGoogle Scholar
  250. Owsiannikow P (1903) Das Rückenmark und das Verlängerte Mark des Neunauges. Mem Acad Imp Sci St Petersbourg 14:1–32Google Scholar
  251. Pearson AA (1936) The acustico-lateral centers and the cerebellum, with fiber connections, of fishes. J Comp Neurol 65:201–294Google Scholar
  252. Peruzzo B, Rodriguez S, Delannoy L, Hein S, Rodriguez EM, Oksche A (1987) Ultrastructural immunocytochemical study of the massa caudalis of the subcommissural organ-Reissner’s fiber complex in lamprey larvae (Geotria australis): evidence for a terminal vascular route of secretory material. Cell Tissue Res 247:367–376Google Scholar
  253. Peters A (1960) The structure of peripheral nerves of the lamprey (Lampetra fluviatilis). J Ultrastruct Res 4:349–359PubMedGoogle Scholar
  254. Pfenninger KH, Rovainen CM (1974) Stimulation-and calcium-dependence of vesicle attachment sites in the presynaptic membrane; a freeze-cleave study on the lamprey spinal cord. Brain Res 72:1–23PubMedGoogle Scholar
  255. Pfister C (1971a) Die Matrix im Gehirn von Neunaugenembryonen (Lampetra planeri) (Bloch 1874). Z Mikrosk Anat Forsch 4:485–492Google Scholar
  256. Pfister C (1971b) Die Matrixentwicklung in Tel-und Diencephalon von Lampetra planeri (Bloch) (Cyclostomata) im Verlaufe des Individualzyklus. J Hirnforsch 13:363–375PubMedGoogle Scholar
  257. Pfister C (1971c) Die Matrixentwicklung in Mes-und Rhombencephalon von Lampetra planeri (Bloch) (Cyclostomata) im Verlaufe des Individualzyklus. J Hirnforsch 13:377–383PubMedGoogle Scholar
  258. Pierre J, Réperant J, Ward R, Vesselkin NP, Rio JP, Miceli D, Kratskin I (1992) The serotoninergic system of the brain of the lamprey, Lampetra fluviatilis: an evolutionary perspective. J Chem Neuroanat 5:195–219PubMedGoogle Scholar
  259. Pierre J, Rio JP, Mahouche M, Repérant J (1994) Catecholamine systems in the brain of cyclostomes, the lamprey, Lampetra fluviatilis. In: Smeets WJAJ, Reiner A (eds) Phylogeny and development of catecholamine systems in the CNS of vertebrates. Cambridge University Press, Cambridge, pp 7–19Google Scholar
  260. Polenov AL, Belenky MA, Konstantinova MS (1974) The hypothalamo-hypophysial system of the lamprey, Lampetra fluviatilis L Cell Tissue Res 150:505–519Google Scholar
  261. Polenova OA, Vesselkin NP (1993) Olfactory and nonolfactory projections in the river lamprey (Lampetra fluviatilis) telencephalon. J Hirnforsch 34:261–279PubMedGoogle Scholar
  262. Pombal MA, Rodicio MC, Anadón R (1994) Development and organization of the ocular motor nuclei in the larval sea lamprey, Petromyzon marinus L: an HRP study. J Comp Neurol 341:393–406PubMedGoogle Scholar
  263. Pombal MA, El Manira A, Orlovsky G, Grillner S (1995) Identification of the striatum and its inputs, and the role of the ventral thalamus in the control of reticulospinal neurons and locomotion in lamprey. Soc Neurosci Abstr 21:142Google Scholar
  264. Poon MLT (1980) Induction of swimming in lamprey by Ldopa and amino acids. J Comp Physiol 136:337–344Google Scholar
  265. Pu GA, Dowling JE (1981) Anatomical and physiological characteristics of pineal photoreceptor cells in the larval lamprey Petromyzon marinus. J Neurophysiol 46:1018–1038PubMedGoogle Scholar
  266. Puzdrowski RL, Northcutt RG (1989) Central projections of the pineal complex in the silver lamprey Ichthyomyzon unicuspis. Cell Tissue Res 225:269–274Google Scholar
  267. Reissner E (1860) Beiträge zur Kenntnis vom Bau des Rückenmarkes von Petromyzon fluviatilis. Arch Anat Physiol Wiss Med, Leipzig, pp 545-588Google Scholar
  268. Repérant J, Vesselkin NP, Ermakova TV, Kenigfest NB, Kosareva AA (1980) Radioautographic evidence for both orthograde and retrograde axonal transport of labeled compounds after intraocular injection of [3H]proline in the lamprey (Lampetra fluviatilis). Brain Res 200:179–183PubMedGoogle Scholar
  269. Retzius G (1893a) Ependym und Neuroglia bei den Cyclostomen. Biol Untersuch (Stockh) 5:15–18Google Scholar
  270. Retzius G (1893b) Über Geschmacksknospen bei Petromyzon. Biol Untersuch (Stockh) 5:69–70Google Scholar
  271. Ringham GL (1975) Localization and electrical characteristics of a giant synapse in the spinal cord of the lamprey. J Physiol (Lond) 251:395–407Google Scholar
  272. Rio JP, Vesselkin NP, Kirpitchnikova E, Kenigfest NB, Versaux-Botteri C, Repérant J (1993) Presumptive GABAergic centrifugal input to the lamprey retina: a double-labeling study with axonal tracing and GABA immunocytochemistry. Brain Res 600:9–19PubMedGoogle Scholar
  273. Rodicio MC, De Miguel E, Pompai MA, Anadón R (1992) The origin of trochlear motoneurons in the larval sea lamprey, Petromyzon marinus L. An HRP study. Neurosci Lett 138:19–22PubMedGoogle Scholar
  274. Rodicio MC, Pombal MA, Anadón A (1995) Early development and organization of the retinopetal system in the larval sea lamprey, Petromyzon marinus L: an HRP study. Anat Embryol (Berl) 192:517–526Google Scholar
  275. Rodriguez S, Rodriguez PA, Banse C, Rodriguez EM, Oksche A (1987) Reissner’s fiber, massa caudali and ampulla caudalis in the spinal cord of lamprey larvae (Geotria australis). Light-microscopic immunocytochemical and lectinhistochemical studies. Cell Tissue Res 247:359–366Google Scholar
  276. Ronan M (1988) Anatomical and physiological evidence for electroreception in larval lampreys. Brain Res 448:173–177PubMedGoogle Scholar
  277. Ronan M (1989) Origins of the descending spinal projections in petromyzontid and myxinoid agnathans. J Comp Neurol 281:54–68PubMedGoogle Scholar
  278. Ronan MC, Bodznick D (1986) End buds: non-ampullary electroreceptors in adult lampreys. J Comp Physiol [A] 158:9–15Google Scholar
  279. Ronan M, Northcutt RG (1987) Primary projections of the lateral line nerves in adult lampreys. Brain Behav Evol 30:62–81PubMedGoogle Scholar
  280. Ronan M, Northcutt G (1990) Projections ascending from the spinal cord to the brain in petromyzonid and myxinoid agnathans. J Comp Neurol 291:491–508PubMedGoogle Scholar
  281. Rovainen CM (1967a) Physiological and anatomical studies on large neurons of central nervous system of the sea lamprey (Petromyzon marinus). I. Müller and Mauthner cells. J Neurophysiol 30:1000–1023PubMedGoogle Scholar
  282. Rovainen CM (1967b) Physiological and anatomical studies on large neurons of central nervous system of the sea lamprey (Petromyzon marinus). II. Dorsal cells and giant interneurons. J Neurophysiol 30:1024–1042PubMedGoogle Scholar
  283. Rovainen CM (1974a) Synaptic interactions of identified cells in the spinal cord of the sea lamprey. J Comp Neurol 154:189–206PubMedGoogle Scholar
  284. Rovainen CM (1974b) Synaptic interactions of reticulospinal neurons and nerve cells in the spinal cord of the sea lamprey. J Comp Neurol 154:207–224PubMedGoogle Scholar
  285. Rovainen CM (1974c) Respiratory motoneurons in lampreys. J Comp Physiol 94:57–68Google Scholar
  286. Rovainen CM (1976) Vestibulo-ocular reflexes in the adult sea lamprey. J Comp Physiol 112:159–164Google Scholar
  287. Rovainen CM (1977) Neural control of ventilation in the lamprey. Fed Proc 36:2386–2389PubMedGoogle Scholar
  288. Rovainen CM (1978) Müller cells, ‘Mauthner’ cells, and other identified reticulospinal neurons in the lamprey. In: Faber DS, Korn H (eds) Neurobiology of the Mauthner cell. Raven, New York, pp 245–269Google Scholar
  289. Rovainen CM (1979a) Electrophysiology of vestibulospinal and vestibuloreticulospinal systems in lampreys. J Neurophysiol 42:745–766PubMedGoogle Scholar
  290. Rovainen CM (1979b) Neurobiology of lampreys. Physiol Rev 59:1007–1077PubMedGoogle Scholar
  291. Rovainen CM (1982) Neurophysiology. In: Hardisty MW, Potter IC (eds) The biology of lampreys, vol 4A. Academic, London, pp 1–136Google Scholar
  292. Rovainen CM (1983a) Identified neurons in the lamprey spinal cord and their roles in fictive swimming. In: Roberts A, Roberts B (eds) Neural origin of rhythmic movements. The Society for Experimental Biology Symposium 37, pp 305-330Google Scholar
  293. Rovainen CM (1983b) Generation of respiratory activity by the lamprey brain exposed to picrotoxin and strychnine, and weak synaptic inhibition in motoneurons. Neuroscience 10:875–882PubMedGoogle Scholar
  294. Rovainen CM (1985a) Effects of groups of propriospinal interneurons on fictive swimming in the isolated spinal cord of the lamprey. J Neurophysiol 54:959–977PubMedGoogle Scholar
  295. Rovainen CM (1985b) Respiratory bursts at the midline of the rostral medulla of the lamprey. J Comp Physiol [A] 157:303–309Google Scholar
  296. Rovainen CM, Birnberger KL (1971) Identification and properties of motoneurons to fin muscle of the sea lamprey. J Neurophysiol 34:974–982PubMedGoogle Scholar
  297. Rovainen CM, Dill DA (1984) Counts of axons in electron microscopic sections of ventral roots in lampreys. J Comp Neurol 225:433–440PubMedGoogle Scholar
  298. Rovainen CM, Yan Q (1985) Sensory responses of dorsal cells in the lamprey brain. J Comp Physiol [A] 156:181–183Google Scholar
  299. Rovainen CM, Johnson PA, Roach EA, Mankovsky JA (1973) Projections of individual axons in lamprey spinal cord determined by tracings through serial sections. J Comp Neurol 149:193–202PubMedGoogle Scholar
  300. Rubinson K (1990) The developing visual system and metamorphosis in the lamprey. J Neurobiol 21:1123–1135PubMedGoogle Scholar
  301. Rubinson K, Cain H (1989) Neural differentiation in the retina of the larval sea lamprey (Petromyzon marinus). Vis Neurosci 3:241–248PubMedGoogle Scholar
  302. Rubinson K, Kennedy MC (1979) The organization of the optic tectum in larval, transforming and adult sea lamprey, Petromyzon marinus. In: Freeman RD (ed) Developmental neurobiology of vision. Plenum, New York, pp 359-369Google Scholar
  303. Rüdeberg SI (1961) Morphogenetic studies on the cerebellar nuclei and their homologization in different vertebrates including man. Thesis, LundGoogle Scholar
  304. Rurak DW, Perks AM (1976) The neurohypophysial principle of the Western brook lamprey, Lampetra richardsonii. Studies in the adult. Gen Comp Endocrinol 29:301–312PubMedGoogle Scholar
  305. Rurak DW, Perks AM (1977) The neurohypophysial principle of the Western brook lamprey, Lampetra richardsonii. Studies in the ammocoete larva. Gen Comp Endocrinol 31:91–100PubMedGoogle Scholar
  306. Russell DF (1986) Respiratory pattern generation in adult lampreys (Lampetra fluviatilis): interneurons and burst resetting. J Comp Physiol [A] 158:91–102Google Scholar
  307. Saito T (1928) Über die Müllerschen Zellen im Gehirn des japanischen Flussneunauges (Entosphenus japonicus Martens). Folia Anat Jpn 6:457–475Google Scholar
  308. Saito T (1930) Über das Gehirn des japanischen Flussneunauges (Entosphenus japonicus Martens). Folia Anat Jpn 8:189–263Google Scholar
  309. Samejima M, Tamotsu S, Watanabe K, Morita Y (1989) Photoreceptor cells and neural elements with long axonal processes in the pineal organ of the lamprey, Lampetra japonica, identified by use of the horseradish peroxidase method. Cell Tissue Res 258:219–224Google Scholar
  310. Schaper A (1899) Zur Histologie des Kleinhirns der Petromyzonten. Anat Anz 16:439–446Google Scholar
  311. Schilling K (1907) Über das Gehirn von Petromyzon fluviatilis. Abh Senckenb Naturforsch Ges [Frankf A M] 30:423–446Google Scholar
  312. Schober W (1964) Vergleichend-anatomische Untersuchungen am Gehirn der Larven und adulten Tiere von Lampetra fluviatilis und Lampetra planeri. J Hirnforsch 7:107–209PubMedGoogle Scholar
  313. Schober A, Malz CR, Schober W, Meyer DL (1994) NADPH-diaphorase in the central nervous system of the larval lamprey (Lampetra planeri). J Comp Neurol 345:94–104PubMedGoogle Scholar
  314. Schotland J, Shupliakov O, Wikström M, Brodin L, Srinivasan M, You ZB, Herrera-Marschitz M, Zhang W, Hökfelt T, Grillner S (1995) Control of lamprey locomotor neurons by colocalized monoamine transmitters. Nature 374:266–268PubMedGoogle Scholar
  315. Schultz RE, Berkowitz EC, Pease C (1956) The electron microscopy of the lamprey spinal cord. J Morphol 98:251–273Google Scholar
  316. Schwab ME (1973) Some new aspects about the prosencephalon of Lampetra fluviatilis L. Acta Anat 86:353–375PubMedGoogle Scholar
  317. Selzer ME (1979) Variability in maps of identified neurons in the sea lamprey spinal cord examined by a wholemount technique. Brain Res 163:181–193PubMedGoogle Scholar
  318. Shapovalov AI (1977) Interneuronal synapses with electrical and chemical mechanisms of transmission and evolution of the central nervous system. Zhur Evolyut Biokhim Fiziol 13:621–632Google Scholar
  319. Shapovalov AI (1980) Interneuronal synapses with electrical dual and chemical mode of transmission in vertebrates. Neuroscience 5:1113–1124PubMedGoogle Scholar
  320. Sheridan PH, Youngs LJ, Krieger NR, Selzer ME (1984) Glycine uptake by lamprey spinal neurons demonstrated by light microscopic autoradiography. J Comp Neurol 223:252–258PubMedGoogle Scholar
  321. Shupliakov O, Wallén P, Grillner S (1992) Two types of motoneurons supplying dorsal fin muscles in lamprey and their activity during fictive locomotion. J Comp Neurol 321:112–123PubMedGoogle Scholar
  322. Shupliakov O, Pierbone VA, Gad H, Brodin L (1995) Synaptic vesicle depletion in reticulospinal axons is reduced by 5-hydroxytryptamine: direct evidence for presynaptic modulation of glutaminergic transmission. Eur J Neurosci 7:1111–1116PubMedGoogle Scholar
  323. Sirota M, Viana Di Prisco G, Dubuc R (1995) Electrical microstimulation of mesencephalic locomotor region elicits controlled swimming in semi-intact lampreys. Soc Neurosci Abstr 21:142Google Scholar
  324. Smith DS (1971) On the significance of cross-bridges between microtubules and synaptic vesicles. Philos Trans R Soc Lond [Biol] 261:395–405Google Scholar
  325. Smith DS, Järlfors U, Beránek R (1970) The organization of synaptic axoplasm in the lamprey (Petromyzon marinus) central nervous system. J Cell Biol 46:199–219PubMedGoogle Scholar
  326. Stefanelli A (1933a) Numero, grandezza e forma di alcuni peculiari elementi nervosi dei Petromizonti. Z Zeilforsch 18:146–165Google Scholar
  327. Stefanelli A (1933b) Le cellule e le fibre di Müller dei Petromizonti. Arch Ital Anat Embryol 31:519–548Google Scholar
  328. Stefanelli A (1934) I centri tegmentali dell’encefalo dei Petromizonti. Arch Zool Ital 20:117–202Google Scholar
  329. Stefanelli A (1937) II sistema statico dei Petromizonti (sistema laterale, sistema vestibolare, cervelletto). I. Centri nervosi e vie centrali. Arch Zool Ital 24:209–273Google Scholar
  330. Stefanelli A, Caravita S (1970) Ultrastructural features of the synaptic complex of the vestibular nuclei of Lampetra planeri (Bloch). Z Zeilforsch 108:282–296Google Scholar
  331. Steinbusch HWM, Nieuwenhuys R (1979) Serotonergic neuron systems in the brain of the lamprey, Lampetra fluviatilis. Anat Rec 193:693–694Google Scholar
  332. Stell WK, Walker SE, Chohan KS, Ball AK (1984) The goldfish nervus terminalis: an LHRH-and FMRF-amideimmunoreactive olfactoretinal pathway. Proc Natl Acad Sci USA 81:940–944PubMedGoogle Scholar
  333. Sterba G (1969) Morphologie und Funktion des Subcommissuralorgans. In: Sterba G (ed) Zirkumventrikuläre Organe und Liquor. Int Symp Schloss Reinhardsbrunn 1968. Fischer, Jena, pp 17-32Google Scholar
  334. Sterba G (1972) Neuro-and gliasecretion. In: Hardisty MW, Potter IC (eds) The biology of lampreys, vol 2. Academic, London, pp 69–89Google Scholar
  335. Studnicka FK (1895) Beiträge zur Anatomie und Entwicklungsgeschichte des Vorderhirns der Cranioten. Sitzungsber K Böhm Gesell Wiss Math Naturwiss Kl Abt 1:1–41Google Scholar
  336. Studnicka FK (1912) Über die Entwicklung und die Bedeutung der Seitenaugen von Ammocoetes. Anat Anz 41:561–578Google Scholar
  337. Swain GP, Snedeker JA, Ayers J, Selzer ME (1993) Cytoarchitecture of spinal-projecting neurons in the brain of the larval sea lamprey. J Comp Neurol 336:194–210PubMedGoogle Scholar
  338. Swain GP, Ayers J, Selzer ME (1995) Metamorphosis of spinalprojecting neurons in the brain of the sea lamprey during transformation of the larva to adult: normal anatomy and response to axotomy. J Comp Neurol 362:453–467PubMedGoogle Scholar
  339. Tamotsu S, Morita Y (1986) Photoreception in pineal organs of larval and adult lampreys, Lampetra japonica. J Comp Physiol [A] 159:1–5Google Scholar
  340. Tamotsu S, Korf HW, Morita Y, Oksche A (1990) Immunocytochemical localization of serotonin and photoreceptor-specific proteins (rod-opsin, S-antigen) in the pineal complex of the river lamprey, Lampetra japonica, with special reference to photoneuroendocrine cells. Cell Tissue Res 262:205–216PubMedGoogle Scholar
  341. Tang D, Selzer E (1979) Projections of lamprey spinal neurons determined by the retrograde axonal transport of horseradish peroxidase. J Comp Neurol 188:629–646PubMedGoogle Scholar
  342. Tégner J, Matsushima T, El Manira A, Grillner S (1993) The spinal GABA system modulates burst frequency and intersegmental coordination in the lamprey: differential effects of GABAA and GABAB receptors. J Neurophysiol 69:647–657PubMedGoogle Scholar
  343. Teräväinen H (1971) Anatomical and physiological studies on muscles of lamprey. J Neurophysiol 34:954–973PubMedGoogle Scholar
  344. Teräväinen H, Rovainen CM (1971a) Fast and slow motoneurons to body muscle of the sea lamprey. J Neurophysiol 34:990–999PubMedGoogle Scholar
  345. Teräväinen H, Rovainen CM (1971b) Electrical activity of myotomal and sensory dorsal cells during spinal reflexes in lampreys. J Neurophysiol 34:999–1009PubMedGoogle Scholar
  346. Thompson KJ (1990) Control of respiratory motor pattern by sensory neurons in spinal cord of lamprey. J Comp Physiol [A] 166:675–684Google Scholar
  347. Travén HGC, Brodin L, Lansner A, Ekeberg O, Wallén P, Grillner S (1993) Computer simulations of NMDA and non-NMDA receptor-mediated synaptic drive: sensory and supraspinal modulation of neurons and small networks. J Neurophysiol 70:695–709PubMedGoogle Scholar
  348. Tretjakoff D (1909a) Das Nervensystem von Ammocoetes. I. Das Rückenmark. Arch Mikrosk Anat 73:607–680Google Scholar
  349. Tretjakoff D (1909b) Das Nervensystem von Ammocoetes. II. Gehirn. Arch Mikrosk Anat 74:636–779Google Scholar
  350. Tsuneki K, Gorbman A (1975a) Ultrastructure of the anterior neurohypophysis and the pars distalis of the lamprey, Lampetra tridentata. Gen Comp Endocrinol 25:487–508PubMedGoogle Scholar
  351. Tsuneki K, Gorbman A (1975b) Ultrastructure of pars nervosa and pars intermedia of the lamprey, Lampetra tridentata. Cell Tissue Res 157:165–184PubMedGoogle Scholar
  352. Uchida K, Nakamura T, Morita Y (1992) Signal transmission from pineal photoreceptors to luminosity-type ganglion cells in the lamprey, Lampetra japonica. Neuroscience 47:241–247PubMedGoogle Scholar
  353. Ullén F, Orlovsky GN, Deliagina TG, Grillner S (1993) Role of dermal photoreceptors and lateral eyes in initiation and orientation of locomotion in lamprey. Behav Brain Res 54:107–110PubMedGoogle Scholar
  354. Ullén F, Deliagina TG, Orlovsky GN Grillner S (1995a) Spatial orientation in the lamprey. 1. Control of pitch and roll. J Exp Biol 198:665–673Google Scholar
  355. Ullén F, Deliagina TG, Orlovsky GN, Grillner S (1995b) Spatial orientation in the lamprey. 2. Visual influence on orientation during locomotion and in the attached state. J Exp Biol 198:675–681Google Scholar
  356. Urban L, Székely G (1982) The dorsal column nuclei of the frog. Neuroscience 7:1187–1196PubMedGoogle Scholar
  357. Van Dongen PAM, Hökfelt T, Grillner S, Verhofstad AAJ, Steinbusch HWM, Cuello AC, Terenius L (1985a) Immunohistochemical demonstration of some putative neurotransmitters in the lamprey spinal cord and spinal ganglia: 5-hydroxytryptamine-, tachykinin-, and neuropeptide-Y-immunoreactive neurons and fibers. J Comp Neurol 234:501–522PubMedGoogle Scholar
  358. Van Dongen PAM, Hökfelt T, Grillner S, Verhofstad AAJ, Steinbusch HWM (1985b) Possible target neurons of 5-hydroxytryptamine fibers in the lamprey spinal cord: immunohistochemistry combined with intracellular staining with lucifer yellow. J Comp Neurol 234:523–535PubMedGoogle Scholar
  359. Van Dongen PAM, Theodorsson-Norheim E, Brodin L, Hökfelt T, Grillner S, Peters A, Cuello AC, Forssmann WG, Reinecke M, Singer EA, Lazarus LH (1986) Immunohisto-chemical and Chromatographic studies of peptides with tachykinin-like immunoreactivity in the central nervous system of the lamprey. Peptides 7:297–313PubMedGoogle Scholar
  360. Vesselkin NP, Ermakova TV, Repérant J, Kosareva AA, Kenigfest NB (1980) The retinofugal and retinopetal systems in Lampetra fluviatilis. An experimental study using radioautographic and HRP methods. Brain Res 195:453–460PubMedGoogle Scholar
  361. Vesselkin NP, Repérant J, Kenigfest NB, Miceli D, Ermakova TV, Rio JP (1984) An anatomical and electrophysiological study of the centrifugal visual system in the lamprey (Lampetra fluviatilis). Brain Res 292:41–56PubMedGoogle Scholar
  362. Vesselkin NP, Repérant J, Kenigfest NB, Rio JP, Miceli D, Shupliakov OV (1989) Centrifugal innervation of the lamprey retina. Light-and electron-microscopic and electrophysiological investigation. Brain Res 493:51–65PubMedGoogle Scholar
  363. Viana Di Prisco G, Dubuc R (1995) A study of synaptic responses in lamprey reticulospinal neurones elicited by cutaneous stimulation. Soc Neurosci Abstr 21:142Google Scholar
  364. Viana Di Prisco G, Wallén P, Grillner S (1990) Synaptic effects of intraspinal stretch receptor neurons mediating movement-related feedback during locomotion. Brain Res 530:161–166Google Scholar
  365. Viana Di Prisco G, Ohta Y, Bongianni F, Grillner S, Dubuc R (1995) Trigeminal inputs to reticulospinal neurones in lampreys are mediated by excitatory and inhibitory amino acids. Brain Res 695:76–80PubMedGoogle Scholar
  366. Vinay L, Grillner S (1992) Spino-bulbar neurons convey information to the brainstem about different phases of the locomotor cycle in the lamprey. Brain Res 582:134–138PubMedGoogle Scholar
  367. Von Bartheld CS, Meyer DL (1986) Central projections of the nervus terminalis in the bichir, Polypterus palmas. Cell Tissue Res 244:181–186Google Scholar
  368. Von Bartheld CS, Meyer DL (1988) Central projections of the nervus terminalis in lampreys, lungfishes, and bichirs. Brain Behav Evol 32:151–159Google Scholar
  369. Von Bartheld CS, Lindörfer HW, Meyer DL (1987) The nervus terminalis also exists in cyclostomes and birds. Cell Tissue Res 250:431–434Google Scholar
  370. Von Kupffer K (1906) Die Morphogenie des Centralnerven-systems. In: Hertwig O (ed) Handbuch der vergleichenden und experimentellen Entwicklungslehre der Wirbeltiere, vol II, part 3. Fischer, Jena, pp 1-272Google Scholar
  371. Wächtler K (1974) The distribution of acetylcholinesterase in the cyclostome brain. I. Lampetra planeri (L). Cell Tissue Res 152:259–270PubMedGoogle Scholar
  372. Wächtler K (1983) The acetylcholine-system in the brain of cyclostomes with special references to the telencephalon. J Hirnforsch 24:63–70PubMedGoogle Scholar
  373. Wald U, Selzer M (1981) The inulin space of the lamprey spinal cord. Brain Res 208:113–122PubMedGoogle Scholar
  374. Wallén P (1994) Sensorimotor integration in the lamprey locomotor system. Eur J Morphol 32:168–175PubMedGoogle Scholar
  375. Wallén P, Williams TL (1984) Fictive locomotion in the lamprey spinal cord in vitro compared with swimming in the intact and spinal animal. J Physiol (Lond) 347:225–239Google Scholar
  376. Wallén P, Grillner S, Feldman J, Bergelt S (1985) Dorsal and ventral myotome motoneurons and their input during fictive locomotion in lamprey. J Neurosci 5:651–654Google Scholar
  377. Wallén P, Buchanan JT, Grillner S, Hill RH, Christenson J, Hökfelt T (1989) Effects of 5-hydroxytryptamine on the afterhyperpolarization, spike frequency regulation, and oscillatory membrane properties in lamprey spinal cord neurons. J Neurophysiol 61:759–68PubMedGoogle Scholar
  378. Wallén P, Vinay L, Barthe JY, Grillner S (1995) Locomotor-related modulation of stretch receptor neurons in the lamprey. Soc Neurosci Abstr 21:152Google Scholar
  379. Wannier T (1994) Rostro-caudal distribution of reticulospinal projections from different brainstem nuclei in the lamprey. Brain Res 666:275–278PubMedGoogle Scholar
  380. Wannier T, Orlovsky G, Grillner S (1995) Reticulospinal neurones provide monosynaptic glycinergic inhibition of spinal neurones in lamprey. Neuroreport 6:1597–1600PubMedGoogle Scholar
  381. Wasowicz M, Pierre J, Repérant J, Ward R., Vesselkin NP, Versaux-Botteri C (1994) Immunoreactivity to glial fibrillary acid protein (GFAP) in the brain and spinal cord of the lamprey (Lampetra fluviatilis). J Brain Res 35:71–78Google Scholar
  382. Whitear M, Lane EB (1981) Fine structure of Merkel cells in lampreys. Cell Tissue Res 220:139–151PubMedGoogle Scholar
  383. Whitear M, Lane EB (1983) Oligovillous cells of the epidermis: sensory elements of lamprey skin. J Zool (Lond) 199:359–384Google Scholar
  384. Whiting HP (1948) Nervous structure of the spinal cord of the young larval brook-lamprey. Q J Microsc Sci 89:359–385PubMedGoogle Scholar
  385. Whiting HP (1957) Mauthner neurones in young larval lampreys (Lampetra spp). Q J Microsc Sci 98:163–178Google Scholar
  386. Wickelgren WO (1977a) Physiological and anatomical characteristics of reticulospinal neurones in lamprey. J Physiol (Lond) 270:89–114Google Scholar
  387. Wickelgren WO (1977b) Post-tetanic potentation, habituation and facilitation of synaptic potentials in reticulospinal neurones of lamprey. J Physiol (Lond) 270:115–131Google Scholar
  388. Wickelgren WO, Leonard JP, Grimes MJ, Clard RD (1985) Ultrstuctural correlates of transmitter release in presyn-aptic areas of lamprey reticulospinal axons. J Neurosci 5:1188–1201PubMedGoogle Scholar
  389. Wikström M, Hill R, Hellgren J, Grillner S (1995) The action of 5-HT on calcium-dependent potassium channels and on the spinal locomotor network in lamprey is mediated by 5-HT1A-like receptors. Brain Res 678:191–199PubMedGoogle Scholar
  390. Wislocki GB, Leduc EH, Mitchele AJ (1956) On the ending of Reissner’s fiber in the filum terminale of the spinal cord. J Comp Neurol 104:493–517PubMedGoogle Scholar
  391. Wright GM (1986) Immunocytochemical demonstration of growth hormone, prolactin and somatostatin-like immu-noreactivities in the brain of larval, young adult and upstream migrant adult sea lamprey, Petromyzon marinus. Cell Tissue Res 246:23–31PubMedGoogle Scholar
  392. Yamada Y (1973) Fine structure of the ordinary lateral line organ. I. The neuromast of lamprey, Entosphenus japonicus. J Ultrastruct Res 43:1–17PubMedGoogle Scholar
  393. Yáñez J, Anadón R (1994) Afferent and efferent connections of the habenula in the larval sea lamprey (Petromyzon marinus L): an experimental study. J Comp Neurol 345:148–160PubMedGoogle Scholar
  394. Yáñez J, Anadón R, Holmqvist BI, Ekström P (1993) Neural projections of the pineal organ in the larval sea lamprey (Petromyzon marinus L) revealed by indocarbocyanine dye tracing. Neurosci Lett 164:213–216PubMedGoogle Scholar
  395. Zompa IC, Dubuc R (1995) Optic nerve and tectal inputs to reticulospinal neurones in lampreys. Soc Neurosci Abstr 21:142Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1998

Authors and Affiliations

  • R. Nieuwenhuys
  • C. Nicholson

There are no affiliations available

Personalised recommendations