Advertisement

Software Tools for Multigrid Methods

  • K.-A. Mardal
  • G. W. Zumbusch
  • H. P. Langtangen
Part of the Lecture Notes in Computational Science and Engineering book series (LNCSE, volume 33)

Abstract

This chapter provides a tutorial for the multigrid solver module in Diffpack. With the MGtools class or the NonLinMGtools class, a standard Diffpack finite element application code can be equipped with a flexible multigrid solver by adding about 10 lines of extra code. The applications covered here are the Poisson equation, more general elliptic problems with anisotropic or jumping coefficients and various boundary conditions, the equation of linear elasticity, and a nonlinear Poisson-like problem.

Keywords

Coarse Grid Fine Grid Multigrid Method Grid Level Menu Item 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Braess. Finite elements; Theory, fast solvers, and applications in solid mechanics. Cambridge University Press, 1997.Google Scholar
  2. 2.
    J. H. Bramble. Multigrid Methods, volume 294 of Pitman Research Notes in Mathematical Sciences. Longman Scientific & Technical, Essex, England, 1Google Scholar
  3. 3.
    J. H. Bramble, J. E. Pasciak, J. Wang, and J. Xu. Convergence estimates for multigrid algorithms without regularity assumptions. Math. Comp., 57:23–45, 1991.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial. SIAM Books, 2nd edition, 1996.Google Scholar
  5. 5.
    A. M. Bruaset. A Survey of Preconditioned Iterative Methods. Addison-Wesley Pitman, 1995.Google Scholar
  6. 6.
    A. M. Bruaset, H. P. Langtangen, and G. W. Zumbusch. Domain decomposition and multilevel methods in Diffpack. In P. Bjørstad, M. Espedal, and D. Keyes, editors, Proceedings of the 9th Conference on Domain Decomposition. Wiley, 1997.Google Scholar
  7. 7.
    W. Hackbusch. Multi-Grid Methods and Applications. Springer-Verlag, Berlin, 1985.zbMATHGoogle Scholar
  8. 8.
    W. Hackbusch. Iterative Solution of Large Sparse Systems of Equations. Springer-Verlag, 1994.Google Scholar
  9. 9.
    H. P. Langtangen. Tips and frequently asked questions about Diffpack. Numerical Objects Report Series, Numerical Objects A.S., 1999. See URL http://www.diffpack.com/products/faq/faq-.main.html. Google Scholar
  10. 10.
    H. P. Langtangen. Computational Partial Differential Equations-Numerical Methods and Diffpack Programming. Textbooks in Computational Science and Engineering. Springer, 2nd edition, 2003.Google Scholar
  11. 11.
    K.-A. Mardal and H. P. Langtangen. Mixed finite elements. In H. P. Langtangen and A. Tveito, editors, Advanced Topics in Computational Partial Differential Equations-Numerical Methods and Diffpack Programming. Springer, 2003.Google Scholar
  12. 12.
    K.-A. Mardal, J. Sundnes, H. P. Langtangen, and A. Z Tveito. Systems of PDEs and block preconditioning. In H. P. Langtangen and A. Tveito, editors, Advanced Topics in Computational Partial Differential Equations-Numerical Methods and Diffpack Programming. Springer, 2003.Google Scholar
  13. 13.
    U. Trottenberg, C. Oosterlee, and A. Schuller. Multigrid. Academic Press, 2001.Google Scholar
  14. 14.
    Xuejun Zhang. Multilevel Schwarz methods. Numer. Math., 63(4):521–539, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    G. W. Zumbush. Multigrid methods in Diffpack. Technical report, 1996.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2003

Authors and Affiliations

  • K.-A. Mardal
    • 1
    • 2
  • G. W. Zumbusch
    • 3
  • H. P. Langtangen
    • 1
    • 2
  1. 1.Simula Research LaboratoryNorway
  2. 2.Dept. of InformaticsUniversity of OsloNorway
  3. 3.Institute for Applied MathematicsUniversity of BonnBonnGermany

Personalised recommendations