Advertisement

A Data Generator for Cloud-Scale Benchmarking

  • Tilmann Rabl
  • Michael Frank
  • Hatem Mousselly Sergieh
  • Harald Kosch
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6417)

Abstract

In many fields of research and business data sizes are breaking the petabyte barrier. This imposes new problems and research possibilities for the database community. Usually, data of this size is stored in large clusters or clouds. Although clouds have become very popular in recent years, there is only little work on benchmarking cloud applications. In this paper we present a data generator for cloud sized applications. Its architecture makes the data generator easy to extend and to configure. A key feature is the high degree of parallelism that allows linear scaling for arbitrary numbers of nodes. We show how distributions, relationships and dependencies in data can be computed in parallel with linear speed up.

Keywords

Cloud Computing Data Generator Random Number Generator Generation Speed Work Unit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bennett, C., Grossman, R., Seidman, J.: Malstone: A benchmark for data intensive computing. Technical report, Open Cloud Consortium (2009)Google Scholar
  2. 2.
    Binnig, C., Kossmann, D., Kraska, T., Loesing, S.: How is the weather tomorrow?: Towards a benchmark for the cloud. In: Proceedings of the Second International Workshop on Testing Database Systems, DBTest 2009, pp. 1–6. ACM, New York (2009)Google Scholar
  3. 3.
    Birman, K., Chockler, G., van Renesse, R.: Toward a cloud computing research agenda. SIGACT News 40(2), 68–80 (2009)CrossRefGoogle Scholar
  4. 4.
    Bitton, D., DeWitt, D.J., Turbyfill, C.: Benchmarking database systems: A systematic approach. In: Proceedings of the 9th International Conference on Very Large Data Bases, VLDB 1983, San Francisco, CA, USA, pp. 8–19. ACM, Morgan Kaufmann Publishers Inc. (November 1983)Google Scholar
  5. 5.
    Blackburn, S.M., McKinley, K.S., Garner, R., Hoffmann, C., Khan, A.M., Bentzur, R., Diwan, A., Feinberg, D., Frampton, D., Guyer, S.Z., Hirzel, M., Hosking, A.L., Jump, M., Lee, H., Moss, J.E.B., Phansalkar, A., Stefanovic, D., VanDrunen, T., von Dincklage, D., Wiedermann, B.: Wake up and smell the coffee: evaluation methodology for the 21st century. Communications of the ACM 51(8), 83–89 (2008)CrossRefGoogle Scholar
  6. 6.
    Boncz, P.A., Manegold, S., Kersten, M.L.: Database architecture evolution: Mammals flourished long before dinosaurs became extinct. In: Proceedings of the 35th International Conference on Very Large Data Bases, VLDB 2009, pp. 1648–1653. VLDB Endowment (2009)Google Scholar
  7. 7.
    Bruno, N., Chaudhuri, S.: Flexible database generators. In: Proceedings of the 31st International Conference on Very Large Data Bases, VLDB 2005, pp. 1097–1107. VLDB Endowment (2005)Google Scholar
  8. 8.
    Cooper, B.F., Silberstein, A., Tam, E., Ramakrishnan, R., Sears, R.: Benchmarking cloud serving systems with ycsb. In: Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC 2010, pp. 143–154. ACM, New York (2010)Google Scholar
  9. 9.
    Copeland, G.P., Khoshafian, S.: A decomposition storage model. In: Proceedings of the 1985 ACM SIGMOD International Conference on Management of Data, SIGMOD 1985, pp. 268–279. ACM, New York (1985)CrossRefGoogle Scholar
  10. 10.
    Foster, I.: Designing and Building Parallel Programs: Concepts and Tools for Parallel Software Engineering. Addison Wesley, Reading (1995)zbMATHGoogle Scholar
  11. 11.
    Gray, J.: Database and transaction processing performance handbook. In: Gray, J. (ed.) The Benchmark Handbook for Database and Transaction Systems, 2nd edn. Morgan Kaufmann Publishers, San Francisco (1993)Google Scholar
  12. 12.
    Gray, J., Sundaresan, P., Englert, S., Baclawski, K., Weinberger, P.J.: Quickly generating billion-record synthetic databases. In: Proceedings of the 1994 ACM SIGMOD International Conference on Management of Data, SIGMOD 1994, pp. 243–252. ACM, New York (1994)CrossRefGoogle Scholar
  13. 13.
    Hoag, J.E., Thompson, C.W.: A parallel general-purpose synthetic data generator. SIGMOD Record 36(1), 19–24 (2007)CrossRefGoogle Scholar
  14. 14.
    Houkjær, K., Torp, K., Wind, R.: Simple and realistic data generation. In: Proceedings of the 32nd International Conference on Very Large Data Bases, VLDB 2006, pp. 1243–1246. VLDB Endowment (2006)Google Scholar
  15. 15.
    Korth, H.F., Bernstein, P.A., Fernández, M.F., Gruenwald, L., Kolaitis, P.G., McKinley, K.S., Özsu, M.T.: Paper and proposal reviews: is the process flawed? SIGMOD Record 37(3), 36–39 (2008)CrossRefGoogle Scholar
  16. 16.
    Lin, P.J., Samadi, B., Cipolone, A., Jeske, D.R., Cox, S., Rendón, C., Holt, D., Xiao, R.: Development of a synthetic data set generator for building and testing information discovery systems. In: Proceedings of the Third International Conference on Information Technology: New Generations, ITNG 2006, Washington, DC, USA, pp. 707–712. IEEE Computer Society, Los Alamitos (2006)Google Scholar
  17. 17.
    O’Neil, P.E.: The set query benchmark. In: Gray, J. (ed.) The Benchmark Handbook for Database and Transaction Systems, 2nd edn. Morgan Kaufmann Publishers, San Francisco (1993)Google Scholar
  18. 18.
    Poess, M., Floyd, C.: New tpc benchmarks for decision support and web commerce. SIGMOD Record 29(4), 64–71 (2000)CrossRefGoogle Scholar
  19. 19.
    Rabl, T., Lang, A., Hackl, T., Sick, B., Kosch, H.: Generating shifting workloads to benchmark adaptability in relational database systems. In: Nambiar, R.O., Poess, M. (eds.) TPCTC 2009. LNCS, vol. 5895, pp. 116–131. Springer, Heidelberg (2009)Google Scholar
  20. 20.
    Ramamurthy, R., DeWitt, D.J., Su, Q.: A case for fractured mirrors. In: Proceedings of the 28th International Conference on Very Large Data Bases, VLDB 2002, pp. 430–441. VLDB Endowment (2002)Google Scholar
  21. 21.
    Stephens, J.M., Poess, M.: Mudd: a multi-dimensional data generator. In: Proceedings of the 4th International Workshop on Software and Performance, WOSP 2004, pp. 104–109. ACM, New York (2004)Google Scholar
  22. 22.
    Stonebraker, M.: A new direction for tpc? In: Nambiar, R.O., Poess, M. (eds.) TPCTC 2009. LNCS, vol. 5895, pp. 11–17. Springer, Heidelberg (2009)Google Scholar
  23. 23.
    Stonebraker, M., Abadi, D.J., Batkin, A., Chen, X., Cherniack, M., Ferreira, M., Lau, E., Lin, A., Madden, S., O’Neil, E.J., O’Neil, P.E., Rasin, A., Tran, N., Zdonik, S.B.: C-store: A column-oriented dbms. In: Proceedings of the 31st International Conference on Very Large Data Bases, VLDB 2005, pp. 553–564. VLDB Endowment (2005)Google Scholar
  24. 24.
    Szalay, A.S., Gray, J., Thakar, A., Kunszt, P.Z., Malik, T., Raddick, J., Stoughton, C., van den Berg, J.: The sdss skyserver: Public access to the sloan digital sky server data. In: Proceedings of the 2002 ACM SIGMOD International Conference on Management of Data, SIGMOD 2002, pp. 570–581. ACM, New York (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tilmann Rabl
    • 1
  • Michael Frank
    • 1
  • Hatem Mousselly Sergieh
    • 1
  • Harald Kosch
    • 1
  1. 1.Chair of Distributed Information SystemsUniversity of PassauGermany

Personalised recommendations