Implicitly and Intelligently Influencing the Interactive Experience

  • Michael J. O’Grady
  • Mauro Dragone
  • Richard Tynan
  • Gregory M. P. O’Hare
  • Jie Wan
  • Conor Muldoon
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6525)

Abstract

Enabling intuitive interaction in system design remains an art more than a science. This difficulty is exacerbated when the diversity of device and end user group is considered. In this paper, it is argued that conventional interaction modalities are unsuitable in many circumstances and that alternative modalities need be considered. Specifically the case of implicit interaction is considered, and the paper discusses how its use may lead to more satisfactory experiences. Specifically, harnessing implicit interaction in conjunction with the traditional explicit interaction modality, can enable a more intuitive and natural interactive experience. However, the exercise of capturing and interpreting implicit interaction is problematic and is one that lends itself to the adoption of AI techniques. In this position paper, the potential of lightweight intelligent agents is proposed as a model for harmonising the explicit and implicit components of an arbitrary interaction.

Keywords

Implicit interaction Social Signal Processing Intelligent agents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aarts, E., Grotenhuis, F.: Ambient intelligence 2.0: Towards synergetic prosperity. In: Tscheligi, M., de Ruyter, B., Markopoulus, P., Wichert, R., Mirlacher, T., Meschterjakov, A., Reitberger, W. (eds.) AmI 2009. LNCS, vol. 5859, pp. 1–13. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  2. 2.
    Argyle, M., Salter, V., Nicolson, H., Burgess, N.W.P.: The communication of inferior and superior attitudes by verbal and nonverbal signals. British Journal of Social & Clinical Psychology 9, 221–231 (1970)CrossRefGoogle Scholar
  3. 3.
    Dix, A., Finlay, J., Abowd, G.D., Beale, R.: Human Computer Interaction, 3rd edn. Pearson, London (2003)MATHGoogle Scholar
  4. 4.
    Ekman, P., Friesen, W.: The repertoire of nonverbal behavior: Categories, origins, usage, and coding. Semiotica 1, 49–97 (1969)CrossRefGoogle Scholar
  5. 5.
    Georgeff, M., Pell, B., Pollack, M.E., Tambe, M., Wooldridge, M.J.: The belief-desire-intention model of agency. In: Papadimitriou, C., Singh, M.P., Müller, J.P. (eds.) ATAL 1998. LNCS (LNAI), vol. 1555, pp. 1–10. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Goleman, D.: Social Intelligence: The New Science of Human Relationships. Bantam, New York (2006)Google Scholar
  7. 7.
    Höök, K.: Designing and evaluating intelligent user interfaces. In: IUI 1999: Proceedings of the 4th International Conference on Intelligent User Interfaces, pp. 5–6. ACM, New York (1999)Google Scholar
  8. 8.
    Keegan, S., O’Hare, G.M., O’Grady, M.J.: Easishop: Ambient intelligence assists everyday shopping. Information Sciences 178(3), 588–611 (2008)CrossRefGoogle Scholar
  9. 9.
    Muldoon, C., OHare, G., Collier, R.W., OGrady, M.: Towards pervasive intelligence: Reflections on the evolution of the agent factory framework. In: El Fallah Seghrouchni, A., Dix, J., Dastani, M., Bordini, R.H. (eds.) Multi-Agent Programming, pp. 187–212. Springer, US (2009)CrossRefGoogle Scholar
  10. 10.
    Norman, D.A.: The Design of Everyday Things. Basic Books, New York, reprint paperback edn. (2002)Google Scholar
  11. 11.
    O’Grady, M.J., O’Hare, G.M.P., Donaghey, C.: Delivering adaptivity through context-awareness. Journal of Network and Computer Applications 30(3), 1007–1033 (2007)CrossRefGoogle Scholar
  12. 12.
    O’Hare, G.M.P., O’Grady, M.J., Muldoon, C., Bradley, J.F.: Embedded Agents: A Paradigm for Mobile Services. International Journal of Web and Grid Services (IJWGS) 2(4), 379–405 (2006)CrossRefGoogle Scholar
  13. 13.
    Oulasvirta, A., Tamminen, S., Roto, V., Kuorelahti, J.: Interaction in 4-second bursts: the fragmented nature of attentional resources in mobile hci. In: CHI 2005: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 919–928. ACM, New York (2005)Google Scholar
  14. 14.
    Oviatt, S.: Multimodal interactive maps: designing for human performance. Hum.-Comput. Interact. 12(1), 93–129 (1997)CrossRefGoogle Scholar
  15. 15.
    Pentland, A.: Social signal processing. Signal Processing Magazine, IEEE 24(4), 108–111 (2007)CrossRefGoogle Scholar
  16. 16.
    Sebe, N.: Multimodal interfaces: Challenges and perspectives. Journal of Ambient Intelligence and Smart Environments 1(1), 23–30 (2009)Google Scholar
  17. 17.
    Thorndike, R.K.: Intelligence and its uses. Harper’s Magazine 140, 227–335 (1920)Google Scholar
  18. 18.
    Veit, M., Herrmann, S.: Model-view-controller and object teams: a perfect match of paradigms. In: AOSD 2003: Proceedings of the 2nd International Conference on Aspect-Oriented Software Development, pp. 140–149. ACM, New York (2003)Google Scholar
  19. 19.
    Vinciarelli, A., Pantic, M., Bourlard, H.: Social signal processing: Survey of an emerging domain. Image and Vision Computing 27(12), 1743–1759 (2009)CrossRefGoogle Scholar
  20. 20.
    Wang, F.Y., Carley, K.M., Zeng, D., Mao, W.: Social computing: From social informatics to social intelligence. IEEE Intelligent Systems 22, 79–83 (2007)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Michael J. O’Grady
    • 1
  • Mauro Dragone
    • 1
  • Richard Tynan
    • 1
  • Gregory M. P. O’Hare
    • 1
  • Jie Wan
    • 2
  • Conor Muldoon
    • 1
  1. 1.CLARITY: Centre for Sensor Web Technologies, School of Computer Science & InformaticsUniversity College DublinDublinIreland
  2. 2.Department of Computing & NetworkingInstitute of Technology CarlowCarlowIreland

Personalised recommendations