UnrealGoal Bots

Conceptual Design of a Reusable Interface
  • Koen V. Hindriks
  • Birna van Riemsdijk
  • Tristan Behrens
  • Rien Korstanje
  • Nick Kraayenbrink
  • Wouter Pasman
  • Lennard de Rijk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6525)


It remains a challenge with current state of the art technology to use BDI agents to control real-time, dynamic and complex environments. We report on our effort to connect the Goal agent programming language to the real-time game Unreal Tournament 2004. BDI agents provide an interesting alternative to control bots in a game such as Unreal Tournament to more reactive styles of controlling such bots. Establishing an interface between a language such as Goal and Unreal Tournament, however, poses many challenges. We focus in particular on the design of a suitable and reusable interface to manage agent-bot interaction and argue that the use of a recent toolkit for developing an agent-environment interface provides many advantages. We discuss various issues related to the abstraction level that fits an interface that connects high-level, logic-based BDI agents to a real-time environment, taking into account some of the performance issues.

Categories and subject descriptors:

I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—Intelligent Agents;

I.6.7 [Simulation Support Systems]: Environments


agent-environment interaction agent-oriented programming 

General terms

Design Standardization Languages 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brom, C., Gemrot, J., Bida, M., Burkert, O., Partington, S.J., Bryson, J.: POSH Tools for Game Agent Development by Students and Non-Programmers. In: Proc. of the 9th Computer Games Conference (CGAMES 2006), pp. 126–133 (2006)Google Scholar
  2. 2.
    Laird, J.E.: Using a computer game to develop advanced ai. Computer 34(7), 70–75 (2001)CrossRefGoogle Scholar
  3. 3.
    Patel, P., Hexmoor, H.: Designing Bots with BDI Agents. In: Proc. of the Symposium on Collaborative Technologies and Systems (CTS 2009), pp. 180–186 (2009)Google Scholar
  4. 4.
    Norling, E., Sonenberg, L.: Creating Interactive Characters with BDI Agents. In: Proc. of the Australian Workshop on Interactive Entertainment (IE 2004) (2004)Google Scholar
  5. 5.
    Botprize competition, (Accessed 30, January 2010)
  6. 6.
    Davies, N., Mehdi, Q.H., Gough, N.E.: Towards Interfacing BDI With 3D Graphics Engines. In: Proceedings of CGAIMS 2005. Sixth International Conference on Computer Games: Artificial Intelligence and Mobile Systems (2005)Google Scholar
  7. 7.
    Wang, D., Subagdja, B., Tan, A.H., Ng, G.W.: Creating Human-like Autonomous Players in Real-time First Person Shooter Computer Games. In: Proc. of the 21st Conference on Innovative Applications of Artificial Intelligence (IAAI 2009) (2009)Google Scholar
  8. 8.
    Kaminka, G., Veloso, M., Schaffer, S., Sollitto, C., Adobbati, R., Marshall, A., Scholer, A., Tejada, S.: Gamebots: A flexible test bed for multiagent team research. Communications of the ACM 45(1), 43–45 (2002)CrossRefGoogle Scholar
  9. 9.
    RobocupRescue, (Accessed 30, January 2010)
  10. 10.
    Burkert, O., Kadlec, R., Gemrot, J., Bída, M., Havlíček, J., Dörfler, M., Brom, C.: Towards fast prototyping of iVAs behavior: Pogamut 2. In: Pelachaud, C., Martin, J.-C., André, E., Chollet, G., Karpouzis, K., Pelé, D. (eds.) IVA 2007. LNCS (LNAI), vol. 4722, pp. 362–363. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  11. 11.
    Behrens, T.M., Dix, J., Hindriks, K.V.: Towards an Environment Interface Standard for Agent-Oriented Programming. Technical report, Clausthal University of Technology, IfI-09-09 (September 2009)Google Scholar
  12. 12.
    Behrens, T., Hindriks, K., Dix, J., Dastani, M., Bordini, R., Hübner, J., Braubach, L., Pokahr, A.: An interface for agent-environment interaction. In: Proceedings of the The Eighth International Workshop on Programming Multi-Agent Systems (2010)Google Scholar
  13. 13.
    Kim, I.C.: UTBot: A Virtual Agent Platform for Teaching Agent System Design. Journal of Multimedia 2(1), 48–53 (2007)CrossRefGoogle Scholar
  14. 14.
    Partington, S.J., Bryson, J.J.: The behavior oriented design of an unreal tournament character. In: Panayiotopoulos, T., Gratch, J., Aylett, R.S., Ballin, D., Olivier, P., Rist, T. (eds.) IVA 2005. LNCS (LNAI), vol. 3661, pp. 466–477. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Jacobs, S., Ferrein, A., Ferrein Lakemeyer, G.: Unreal GOLOG Bots. In: Proceedings of the 2005 IJCAI Workshop on Reasoning, Representation, and Learning in Computer Games, pp. 31–36 (2005)Google Scholar
  16. 16.
    Tweedale, J., Ichalkaranje, N., Sioutis, C., Jarvis, B., Consoli, A., Phillips-Wren, G.: Innovations in multi-agent systems. Journal of Network and Computer Applications 30(3), 1089–1115 (2007)CrossRefGoogle Scholar
  17. 17.
    JACK: Agent Oriented Software Group, (Accessed 30, January 2010)
  18. 18.
    Laird, J.E., Newell, A., Rosenbloom, P.: Soar: An architecture for general intelligence. Artificial Intelligence 33(1), 1–64 (1987)CrossRefGoogle Scholar
  19. 19.
    Laird, J.E., Assanie, M., Bachelor, B., Benninghoff, N., Enam, S., Jones, B., Kerfoot, A., Lauver, C., Magerko, B., Sheiman, J., Stokes, D., Wallace, S.: A test bed for developing intelligent synthetic characters. In: Spring Symposium on Artificial Intelligence and Interactive Entertainment (AAAI 2002) (2002)Google Scholar
  20. 20.
    Best, B.J., Lebiere, C.: Teamwork, Communication, and Planning in ACT-R. In: Proceedings of the 2003 IJCAI Workshop on Cognitive Modeling of Agents and Multi-Agent Interactions, pp. 64–72 (2003)Google Scholar
  21. 21.
    SWI Prolog, (Accessed 30, January 2010)
  22. 22.
    Hindriks, K.V.: Programming Rational Agents in Goal. In: Multi-Agent Programming Languages, Tools and Applications, pp. 119–157. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  23. 23.
    Hindriks, K.V.: Goal Programming Guide (2010), Can be downloaded from
  24. 24.
    Bordini, R., Dastani, M., Dix, J., Seghrouchni, A.E.F.: Multi-Agent Programming Languages, Platforms and Applications. Springer, Heidelberg (2005)CrossRefMATHGoogle Scholar
  25. 25.
    Bordini, R., Dastani, M., Dix, J., Seghrouchni, A.E.F.: Multi-Agent Programming Languages, Tools and Applications. Springer, Heidelberg (2009)MATHGoogle Scholar
  26. 26.
    Newell, A.: The Knowledge Level. Artificial Intelligence 18(1), 87–127 (1982)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Bellifemine, F.L., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with JADE. Wiley, Chichester (2007)CrossRefGoogle Scholar
  28. 28.
    Hindriks, K.V., van Riemsdijk, M.B., Jonker, C.M.: An empirical study of patterns in agent programs: An Unreal Tournament case study in Goal. In: Proceedings of the 13th International Conference on Principles and Practice of Multi-Agent Systems (PRIMA 2010) (2010)Google Scholar
  29. 29.
    Gemrot, J., Brom, C., Plch, T.: A periphery of pogamut: from bots to agents and back again. In: Dignum, F. (ed.) Agents for Games and Simulations II. LNCS (LNAI), vol. 6525, pp. 19–37. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  30. 30.
    Bartish, A., Thevathayan, C.: BDI Agents for Game Development. In: Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2002), pp. 668–669 (2002)Google Scholar
  31. 31.
    Hirsch, B., Fricke, S., Kroll-Peters, O., Konnerth, T.: Agent programming in practise - experiences with the jiac iv agent framework. In: Sixth International Workshop AT2AI-6: From Agent Theory to Agent Implementation, pp. 93–99 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Koen V. Hindriks
    • 1
  • Birna van Riemsdijk
    • 1
  • Tristan Behrens
    • 2
  • Rien Korstanje
    • 1
  • Nick Kraayenbrink
    • 1
  • Wouter Pasman
    • 1
  • Lennard de Rijk
    • 1
  1. 1.Delft University of TechnologyDelftThe Netherlands
  2. 2.Clausthal University of TechnologyClausthalGermany

Personalised recommendations