Advertisement

Public Key Encryption Schemes with Bounded CCA Security and Optimal Ciphertext Length Based on the CDH Assumption

  • Mayana Pereira
  • Rafael Dowsley
  • Goichiro Hanaoka
  • Anderson C. A. Nascimento
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6531)

Abstract

In [2] a public key encryption scheme was proposed against adversaries with a bounded number of decryption queries based on the decisional Diffie-Helman Problems. In this paper, we show that the same result can be easily obtained based on weaker computational assumption, namely: the computational Diffie-Helman assumption.

Keywords

Bounded chosen ciphertext secure public key encryption computational Diffie-Hellman assumption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cash, D., Kiltz, E., Shoup, V.: The twin diffie-hellman problem and applications. Journal of Cryptology 22(4), 470–504 (2009)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Cramer, R., Hanaoka, G., Hofheinz, D., Imai, H., Kiltz, E., Pass, R., Shelat, A., Vaikuntanathan, V.: Bounded CCA2-secure encryption. In: Kurosawa, K. (ed.) ASIACRYPT 2007. LNCS, vol. 4833, pp. 502–518. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  3. 3.
    Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  4. 4.
    Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Computing 33(1), 167–226 (2003)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Dolev, D., Dwork, C., Naor, M.: Non-malleable cryptography. In: STOC 1991 (1991)Google Scholar
  6. 6.
    Goldreich, O., Levint, L.: A hard-core predicate for all one-way functions. In: STOC 1989 (1989)Google Scholar
  7. 7.
    Hanaoka, G., Kurosawa, K.: Efficient chosen ciphertext secure public key encryption under the computational diffie-hellman assumption. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 308–325. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  8. 8.
    Haralambiev, K., Jager, T., Kiltz, E., Shoup, V.: Simple and efficient public-key encryption from computational diffie-hellman in the standard model. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 1–18. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Hofheinz, D., Kiltz, E.: Secure hybrid encryption from weakened key encapsulation. In: Menezes, A. (ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 553–571. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  10. 10.
    Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attacks. In: STOC 1990 (1990)Google Scholar
  11. 11.
    Rackoff, C., Simon, D.: Non-interactive zero-knowledge proof of knowledge and chosen ciphertext attack. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 433–444. Springer, Heidelberg (1992)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mayana Pereira
    • 1
  • Rafael Dowsley
    • 2
  • Goichiro Hanaoka
    • 2
  • Anderson C. A. Nascimento
    • 1
  1. 1.Department of Electrical EngeneeringUniversity of BrasíliaBrasíliaBrazil
  2. 2.National Institute of Advanced Industrial Science and Technology (AIST)Chyioda-kuJapan

Personalised recommendations