Advertisement

The Topic Analysis of Hospice Care Research Using Co-word Analysis and GHSOM

  • Yu-Hsiang Yang
  • Huimin Bhikshu
  • Rua-Huan Tsaih
Part of the Communications in Computer and Information Science book series (CCIS, volume 134)

Abstract

The purpose of this study was to propose a multi-layer topic map analysis of palliative care research using co-word analysis of informetrics with Growing Hierarchical Self-Organizing Map (GHSOM). The topic map illustrated the delicate intertwining of subject areas and provided a more explicit illustration of the concepts within each subject area. We applied GHSOM, a text-mining Neural Networks tool, to obtain a hierarchical topic map. The result of the topic map may indicate that the subject area of health care science and service played an importance role in multidiscipline within the research related to palliative care.

Keywords

topic-map co-word GHSOM hospice care palliative care terminal care 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cameron, C.S.: Professional Attitudes and Terminal Care. Public Health Rep. 67, 955–959 (1952)CrossRefGoogle Scholar
  2. 2.
    Payne, S.A., Turner, J.M.: Research methodologies in palliative care: a bibliometric analysis. Palliat 22, 336–342 (2008)CrossRefGoogle Scholar
  3. 3.
    Dittenbach, M., Rauber, A., Merkl, D.: Uncovering hierarchical structure in data using the growing hierarchical self-organizing map. Neurocomputing 48, 199–216 (2002)CrossRefzbMATHGoogle Scholar
  4. 4.
    Rauber, A., Merkl, D., Dittenbach, M.: The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data. IEEE Transactions on Neural Networks 13, 1331–1341 (2002)CrossRefzbMATHGoogle Scholar
  5. 5.
    Campanario, J.: Using neural networks to study networks of scientific journals. Scientometrics 33, 23–40 (1995)CrossRefGoogle Scholar
  6. 6.
    Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological cybernetics 43, 59–69 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kohonen, T., Kaski, S., Lagus, K., Salojarvi, J., Honkela, J., Paatero, V., Saarela, A.: Self organization of a massive document collection. IEEE Transactions on Neural Networks 11, 574–585 (2000)CrossRefGoogle Scholar
  8. 8.
    Noyons, E., van Raan, A.: Monitoring scientific developments from a dynamic perspective: self-organized structuring to map neural network research. Journal of the American Society for Information Science 49, 68–81 (1998)Google Scholar
  9. 9.
    Rauber, A., Merkl, D., Dittenbach, M.: The growing hierarchical self-organizing map: exploratory analysis of high-dimensional data. IEEE Transactions on Neural Networks 13, 1331 (2002)CrossRefzbMATHGoogle Scholar
  10. 10.
    Shih, J., Chang, Y., Chen, W.: Using GHSOM to construct legal maps for Taiwan’s securities and futures markets. Expert Systems with Applications 34, 850–858 (2008)CrossRefGoogle Scholar
  11. 11.
    Li, S.T., Chang, W.C.: Design And Evaluation Of A Layered Thematic Knowledge Map System. Journal of Computer Information Systems 49 (2009)Google Scholar
  12. 12.
    Wolfram, D.: Applied informetrics for information retrieval research. Greenwood Publishing Group, Westport (2003)Google Scholar
  13. 13.
    Salton, G.: Automatic text processing: the transformation, analysis, and retrieval of information by computer. Addison-Wesley, Reading (1989)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Yu-Hsiang Yang
    • 1
  • Huimin Bhikshu
    • 2
  • Rua-Huan Tsaih
    • 1
  1. 1.Dept. of Management Information SystemsNational Chengchi UniversityTaipeiTaiwan
  2. 2.Dharma Drum Buddhist College (DDBC)TaipeiTaiwan

Personalised recommendations