Advertisement

Using the SRSim Software for Spatial and Rule-Based Modeling of Combinatorially Complex Biochemical Reaction Systems

  • Gerd Grünert
  • Peter Dittrich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6501)

Abstract

The simulator software SRSim is presented here. It is constructed from the molecular dynamics simulator LAMMPS and a set of extensions for modeling rule-based reaction systems. The aim of this software is coping with reaction networks that are combinatorially complex as well as spatially inhomogeneous. On the one hand, there is a combinatorial explosion of necessary species and reactions that occurs when complex biomolecules are allowed to interact, e.g. by polymerization or phosphorilation processes. On the other hand, diffusion over longer distances in the cell as well as the geometric structures of sophisticated macromolecules can further influence the dynamic behavior of a system. Addressing the mentioned demands, the SRSim simulation system features a stochastic, particle based, spatial simulation of Brownian Dynamics in three dimensions of a rule-based reaction system.

Keywords

Message Passing Interface Dissipative Particle Dynamic Reaction Rule Membrane Computing Spatial Simulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adleman, L.M.: Molecular computation of solutions to combinatorial problems. Science 266(5187), 1021–1024 (1994)CrossRefGoogle Scholar
  2. 2.
    Arkin, A.P.: Synthetic cell biology. Curr. Opin. Biotechnol. 12(6), 638–644 (2001)CrossRefGoogle Scholar
  3. 3.
    Berg, O.G., von Hippel, P.H.: Diffusion-controlled macromolecular interactions. Annu. Rev. Biophys. Biophys. Chem. 14(1), 131–158 (1985)CrossRefGoogle Scholar
  4. 4.
    Berger, B., Shor, P.W., Tucker-Kellogg, L., King, J.: Local rule-based theory of virus shell assembly. Proc. Natl. Acad. Sci. U S A 91(16), 7732–7736 (1994)CrossRefzbMATHGoogle Scholar
  5. 5.
    Blinov, M.L., Faeder, J.R., Goldstein, B., Hlavacek, W.S.: Bionetgen: software for rule-based modeling of signal transduction based on the interactions of molecular domains. Bioinformatics 20(17), 3289–3291 (2004)CrossRefGoogle Scholar
  6. 6.
    Cardelli, L., Gordon, A.D.: Mobile ambients. In: Nivat, M. (ed.) FOSSACS 1998. LNCS, vol. 1378, pp. 140–155. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  7. 7.
    Conrad, M., Zauner, K.P.: Dna as a vehicle for the self-assembly model of computing. Biosystems 45(1), 59–66 (1998)CrossRefGoogle Scholar
  8. 8.
    Conzelmann, H., Saez-Rodriguez, J., Sauter, T., Kholodenko, B.N., Gilles, E.D.: A domain-oriented approach to the reduction of combinatorial complexity in signal transduction networks. BMC Bioinformatics 7, 34 (2006)CrossRefGoogle Scholar
  9. 9.
    Ermak, D.L., Mccammon, J.A.: Brownian dynamics with hydrodynamic interactions. J. Chem. Phys. 69(4), 1352–1360 (1978)CrossRefGoogle Scholar
  10. 10.
    Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction networks in the biochemical abstract machine BIOCHAM. J. of biol. phys. and chem. 4, 64–73 (2004)CrossRefzbMATHGoogle Scholar
  11. 11.
    Fellermann, H., Rasmussen, S., Ziock, H., Solé, R.: Life cycle of a minimal protocell-a dissipative particle dynamics study. Artificial Life 13(4), 319–345 (2007)CrossRefGoogle Scholar
  12. 12.
    Feret, J., Danos, V., Krivine, J., Harmer, R., Fontana, W.: Internal coarse-graining of molecular systems. Proc. Natl. Acad. Sci. U S A 106(16), 6453 (2009)CrossRefGoogle Scholar
  13. 13.
    Gruenert, G., Ibrahim, B., Lenser, T., Lohel, M., Hinze, T., Dittrich, P.: Rule-based spatial modeling with diffusing, geometrically constrained molecules. BMC Bioinformatics 11(1), 307 (2010)CrossRefGoogle Scholar
  14. 14.
    Harris, L.A., Hogg, J.S., Faeder, J.R.: Compartmental rule-based modeling of biochemical systems. In: Rossetti, M., Hill, R., Johansson, B., Dunkin, A., Ingalls, R. (eds.) Proceedings of the 2009 Winter Simulation Conference (2009)Google Scholar
  15. 15.
    Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Perelson, A.S., Goldstein, B.: The complexity of complexes in signal transduction. Biotechnol. Bioeng. 84(7), 783–794 (2003)CrossRefGoogle Scholar
  16. 16.
    Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Posner, R.G., Hucka, M., Fontana, W.: Rules for modeling signal-transduction systems. Sci STKE 2006(344) re6 (2006)Google Scholar
  17. 17.
    Humphrey, W., Dalke, A., Schulten, K.: VMD – Visual Molecular Dynamics. Journal of Molecular Graphics 14, 33–38 (1996)CrossRefGoogle Scholar
  18. 18.
    Ibrahim, B., Diekmann, S., Schmitt, E., Dittrich, P.: In-silico modeling of the mitotic spindle assembly checkpoint. PLoS ONE 3(2), e1555 (2008)CrossRefGoogle Scholar
  19. 19.
    Karplus, M., McCammon, J.A.: Molecular dynamics simulations of biomolecules. Nat. Struct. Biol. 9(9), 646–652 (2002)CrossRefGoogle Scholar
  20. 20.
    Kurth, W., Kniemeyer, O., Buck-Sorlin, G.: Relational growth grammars - a graph rewriting approach to dynamical systems with a dynamical structure. In: Banâtre, J.P., Fradet, P., Giavitto, J.L., Michel, O. (eds.) Unconventional Programming Paradigms, pp. 56–72. Springer, Berlin (2005)CrossRefGoogle Scholar
  21. 21.
    Leach, A.: Molecular Modelling: Principles and Applications, 2nd edn. Prentice-Hall, Englewood Cliffs (2001)Google Scholar
  22. 22.
    Lemerle, C., Ventura, B.D., Serrano, L.: Space as the final frontier in stochastic simulations of biological systems. FEBS Lett. 579(8), 1789–1794 (2005)CrossRefGoogle Scholar
  23. 23.
    Lok, L., Brent, R.: Automatic generation of cellular reaction networks with moleculizer 1.0. Nature Biotech. 23(1), 131–136 (2005)CrossRefGoogle Scholar
  24. 24.
    Manca, V., Bianco, L., Fontana, F.: Evolution and oscillation in p systems: Applications to biological phenomena. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 63–84. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  25. 25.
    Minton, A.P.: The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J. Biol. Chem. 276(14), 10577–10580 (2001)CrossRefGoogle Scholar
  26. 26.
    Nakamoto, R.K., Scanlon, J.A.B., Al-Shawi, M.K.: The rotary mechanism of the atp synthase. Archives of Biochemistry and Biophysics 476(1), 43–50 (2008); special Issue: Transport ATPases CrossRefGoogle Scholar
  27. 27.
    Novère, N.L., Shimizu, T.S.: Stochsim: modelling of stochastic biomolecular processes. Bioinformatics 17(6), 575–576 (2001)CrossRefGoogle Scholar
  28. 28.
    Øksendal, B.: Stochastic Differential Equations: An Introduction with Applications. Springer, Heidelberg (2005)zbMATHGoogle Scholar
  29. 29.
    Păun, G., Rozenberg, G., Salomaa, A.: DNA Computing: New Computing Paradigms. Springer, Berlin (1998)CrossRefzbMATHGoogle Scholar
  30. 30.
    Păun, G.: Introduction to Membrane Computing. In: Applications of Membrane Computing, pp. 1–42. Springer, Berlin (2006)Google Scholar
  31. 31.
    Plimpton, S.J.: Fast parallel algorithms for short-range molecular dynamics. J. Comp.Phys. 117, 1–19 (1995)CrossRefzbMATHGoogle Scholar
  32. 32.
    Romero-Campero, F., Pérez-Jiménez, M.: Modelling gene expression control using p systems: The lac operon, a case study. BioSystems 91(3), 438–457 (2008)CrossRefGoogle Scholar
  33. 33.
    Rothemund, P., Papadakis, N., Winfree, E.: Algorithmic self-assembly of DNA Sierpinski triangles. PLoS Biology 2(12), e424 (2004)CrossRefGoogle Scholar
  34. 34.
    Schwartz, R., Shor, P.W., Prevelige, P.E., Berger, B.: Local rules simulation of the kinetics of virus capsid self-assembly. Biophys. J. 75(6), 2626–2636 (1998)CrossRefGoogle Scholar
  35. 35.
    Slepoy, A., Thompson, A., Plimpton, S.: A constant-time kinetic Monte Carlo algorithm for simulation of large biochemical reaction networks. J. Chem. Phys. 128, 205101 (2008)CrossRefGoogle Scholar
  36. 36.
    Smaldon, J., Krasnogor, N., Alexander, C., Gheorghe, M.: Liposome logic. In: Rothlauf, F. (ed.) GECCO 2009: Proceedings of the 11th Annual conference on Genetic and evolutionary computation, pp. 161–168. ACM Press, New York (2009)Google Scholar
  37. 37.
    Sweeney, B., Zhang, T., Schwartz, R.: Exploring the Parameter Space of Complex Self-Assembly through Virus Capsid Models. Biophys. J. 94(3), 772 (2008)CrossRefGoogle Scholar
  38. 38.
    Takahashi, K., Arjunan, S.N.V., Tomita, M.: Space in systems biology of signaling pathways–towards intracellular molecular crowding in silico. FEBS Lett. 579(8), 1783–1788 (2005)CrossRefGoogle Scholar
  39. 39.
    Talcott, C., Dill, D.: The pathway logic assistant. In: Plotkin, G. (ed.) Proceedings of the Third International Workshop on Computational Methods in System Biology, pp. 228–239 (2005)Google Scholar
  40. 40.
    Verlet, L.: Computer ”experiments” on classical fluids. I. Thermodynamical properties of lennard-jones molecules. Phys. Rev. 159(1), 98 (1967)Google Scholar
  41. 41.
    Weber, C.H., Vincenz, C.: A docking model of key components of the disc complex: death domain superfamily interactions redefined. FEBS Lett. 492(3), 171–176 (2001)CrossRefGoogle Scholar
  42. 42.
    Winfree, E., Liu, F., Wenzler, L., Seeman, N.: Design and self-assembly of two-dimensional DNA crystals. Nature 394(6693), 539–544 (1998)CrossRefGoogle Scholar
  43. 43.
    Zhang, T., Rohlfs, R., Schwartz, R.: Implementation of a discrete event simulator for biological self-assembly systems. In: Proceedings of the 37th Winter Simulation Conference, Orlando, FL, USA, December 4-7, 2005, pp. 2223–2231. ACM, New York (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Gerd Grünert
    • 1
  • Peter Dittrich
    • 1
  1. 1.Jena Center for Bioinformatics, Bio Systems Analysis Group, Institute of Computer ScienceFriedrich Schiller University JenaJenaGermany

Personalised recommendations