Reachability Games on Automatic Graphs

  • Daniel Neider
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6482)

Abstract

In this work we study two-person reachability games on finite and infinite automatic graphs. For the finite case we empirically show that automatic game encodings are competitive to well-known symbolic techniques such as BDDs, SAT and QBF formulas. For the infinite case we present a novel algorithm utilizing algorithmic learning techniques, which allows to solve huge classes of automatic reachability games.

Keywords

Regular Language Winning Strategy Automaton Learn Vertex Label Game Graph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Thomas, W.: Infinite games and verification. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 58–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  2. 2.
    Habermehl, P., Vojnar, T.: Regular model checking using inference of regular languages. Electr. Notes Theor. Comput. Sci. 138(3), 21–36 (2005)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Vardhan, A., Sen, K., Viswanathan, M., Agha, G.: Using language inference to verify omega-regular properties. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005. LNCS, vol. 3440, pp. 45–60. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Blumensath, A., Grädel, E.: Finite presentations of infinite structures: Automata and interpretations. Theory Comput. Syst. 37(6), 641–674 (2004)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Alur, R., Madhusudan, P., Nam, W.: Symbolic computational techniques for solving games. STTT 7(2), 118–128 (2005)CrossRefMATHGoogle Scholar
  6. 6.
    Touili, T.: Regular model checking using widening techniques. Electr. Notes Theor. Comput. Sci. 50(4) (2001)Google Scholar
  7. 7.
    Bouajjani, A., Jonsson, B., Nilsson, M., Touili, T.: Regular model checking. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 403–418. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    de Alfaro, L., Henzinger, T.A., Kupferman, O.: Concurrent reachability games. Theor. Comput. Sci. 386(3), 188–217 (2007)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Bollig, B., Katoen, J.P., Kern, C., Leucker, M., Neider, D., Piegdon, D.R.: libalf: The Automata Learning Framework. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 360–364. Springer, Heidelberg (2010)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Daniel Neider
    • 1
  1. 1.Lehrstuhl für Informatik 7RWTH Aachen UniversityGermany

Personalised recommendations