A Conceptually Simple Proof of the Quantum Reverse Shannon Theorem

  • Mario Berta
  • Matthias Christandl
  • Renato Renner
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6519)


The Quantum Reverse Shannon Theorem states that any quantum channel can be simulated by an unlimited amount of shared entanglement and an amount of classical communication equal to the channel’s entanglement assisted classical capacity. In this extended abstract, we summarize a new and conceptually simple proof of this theorem [journal reference:], which has previously been proved in [Bennett et al.,]. Our proof is based on optimal one-shot Quantum State Merging and the Post-Selection Technique for quantum channels.


Mutual Information Entangle State Quantum Channel Classical Communication Classical Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abeyesinghe, A., Devetak, I., Hayden, P., Winter, A.: The mother of all protocols: Restructuring quantum information’s family tree. Proc. R. Soc. A 465(2108), 2537 (2009), Scholar
  2. 2.
    Bennett, C.H., Devetak, I., Harrow, A.W., Shor, P.W., Winter, A.: The quantum reverse Shannon theorem (2006), Scholar
  3. 3.
    Bennett, C.H., Shor, P.W., Smolin, J.A., Thapliyal, A.V.: Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem. IEEE Trans. Inf. Theory 48(10), 2637 (2002), Scholar
  4. 4.
    Berta, M.: Single-shot quantum state merging, Diploma thesis ETH Zurich (2008), Google Scholar
  5. 5.
    Berta, M., Christandl, M., Renner, R.: A Conceptually Simple Proof of the Quantum Reverse Shannon Theorem (2009),, submitted to Comm. Math. Phys. (2009)Google Scholar
  6. 6.
    Berta, M., Dupuis, F., Renner, R., Wullschleger, J.: Optimal decoupling (2010) (in preparation)Google Scholar
  7. 7.
    Christandl, M., König, R., Renner, R.: Post-selection technique for quantum channels with applications to quantum cryptography. Phys. Rev. Lett 102, 20504 (2009), Scholar
  8. 8.
    Datta, N.: Min- and max- relative entropies and a new entanglement monotone. IEEE Trans. Inf. Theory 55(6), 2816 (2009), Scholar
  9. 9.
    Devetak, I.: The private classical capacity and quantum capacity of a quantum channel. IEEE Trans. Inf. Theory 51, 44 (2005), arXiv:quant-ph/0304127MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dupuis, F.: The Decoupling Approach to Quantum Information Theory. PhD thesis, Université de Montréal (2009), Scholar
  11. 11.
    Harrow, A.W.: Entanglement spread and clean resource inequalities. Proc. XVI Int. Cong. Math. Phys. 536 (2009), Scholar
  12. 12.
    Holevo, A.S.: The capacity of the quantum communication channel with general signal states. IEEE Trans. Inf. Theory 44, 269 (1998), Scholar
  13. 13.
    Horodecki, M., Oppenheim, J., Winter, A.: Partial quantum information. Nature 436, 673–676 (2005), Scholar
  14. 14.
    Horodecki, M., Oppenheim, J., Winter, A.: Quantum state merging and negative information. Comm. Math. Phys 269, 107 (2006), Scholar
  15. 15.
    Kitaev, A.: Quantum computations: algorithms and error correction. Russian Math. Surveys 52, 1191 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    König, R., Renner, R., Schaffner, C.: The operational meaning of min- and max-entropy. IEEE Trans. Inf. Theory 55(9), 4337 (2009), Scholar
  17. 17.
    Lloyd, S.: Capacity of the noisy quantum channel. Phys. Rev. A 55, 1613 (1997), Scholar
  18. 18.
    Oppenheim, J.: State redistribution as merging: introducing the coherent relay (2008), Google Scholar
  19. 19.
    Renner, R.: Security of Quantum Key Distribution. PhD thesis, ETH Zurich (2005), Google Scholar
  20. 20.
    Renner, R.S., König, R.: Universally Composable Privacy Amplification Against Quantum Adversaries. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 407–425. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  21. 21.
    Renner, R., Wolf, S.: Smooth Rényi entropy and applications. In: Proc. IEEE Int. Symp. Inf. Theory, vol. 233 (2004)Google Scholar
  22. 22.
    Schumacher, B., Westmoreland, M.D.: Sending classical information via noisy quantum channels. Phys. Rev. A 56, 131 (1997)CrossRefGoogle Scholar
  23. 23.
    Shannon, C.E.: A mathematical theory of communication. Bell. Syst. Tech. J. 423, 379–423, 623–656 (1948)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Shor, P.W.: The quantum channel capacity and coherent information. In: Lecture notes, MSRI Workshop on Quantum Computation (2002)Google Scholar
  25. 25.
    Slepian, D., Wolf, J.: Noiseless coding of correlated information sources. IEEE Trans. Inf. Theory 19, 461 (1971)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Stinespring, W.: Positive function on C*-algebras. Proc. Amer. Math. Soc. 6, 211 (1955)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Tomamichel, M., Colbeck, R., Renner, R.: A fully quantum asymptotic equipartition property. IEEE Trans. Inf. Theory 55(12), 5840 (2009), Scholar
  28. 28.
    Tomamichel, M., Colbeck, R., Renner, R.: Duality between smooth min- and max-entropies. IEEE Trans. Inf. Theory 56(9), 4674 (2010), Scholar
  29. 29.
    van Dam, W., Hayden, P.: Universal entanglement transformations without communication. Phys. Rev. A, Rapid Comm. 67, 060302(R) (2003), Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Mario Berta
    • 1
    • 2
  • Matthias Christandl
    • 1
    • 2
  • Renato Renner
    • 1
  1. 1.Institute for Theoretical PhysicsETH ZurichZurichSwitzerland
  2. 2.Faculty of PhysicsLudwig-Maximilians-Universität MünchenMunichGermany

Personalised recommendations