Functional Nucleic Acids for Fluorescence-Based Biosensing Applications

  • Jennifer Lee
  • Lawrence Lin
  • Yingfu LiEmail author
Part of the Springer Series on Fluorescence book series (SS FLUOR, volume 113)


Functional nucleic acids (FNAs) are single-stranded DNA or RNA molecules that are capable of carrying out the function of ligand binding (by aptamers), catalysis (by nucleic acid enzymes), or both (by aptazymes). Many FNAs have been shown to be suitable molecular recognition elements for many molecular targets, including small molecules and proteins, and have been examined for a variety of biosensing applications. In this chapter, we present a focused discussion on the use of FNAs for the development of fluorescence-based biosensors or bioassays. First, we briefly discuss the technique of “in vitro selection” by which artificial FNAs can be isolated from random-sequence DNA or RNA pools. This is followed by a survey of various strategies in employing aptamers for fluorescence assay development. Finally, we review emerging applications to explore nucleic acid enzymes (ribozymes, DNAzymes, and aptazymes) as fluorescent biosensing probes.


Aptamers Aptazymes Biosensing DNAzymes Fluorescence Functional nucleic acids In vitro selection Molecular recognition elements Nucleic acid enzymes Ribozymes 


  1. 1.
    Navani NK, Li Y (2006) Nucleic acid aptamers and enzymes as sensors. Curr Opin Chem Biol 10:272–281CrossRefGoogle Scholar
  2. 2.
    Silverman SK (2009) Artificial functional nucleic acids: aptamers, ribozymes, and deoxyribozymes identified by in vitro selection. In: Li Y, Lu Y (eds) Functional nucleic acids for analytical applications. Springer, New York, pp 47–108CrossRefGoogle Scholar
  3. 3.
    Liu J, Cao Z, Lu Y (2009) Functional nucleic acid sensors. Chem Rev 109:1948–1998CrossRefGoogle Scholar
  4. 4.
    Kruger K, Grabowski PJ, Zaug AJ et al (1982) Self-splicing RNA: autoexcision and autocyclization of the ribosomal RNA intervening sequence of Tetrahymena. Cell 31:147–157CrossRefGoogle Scholar
  5. 5.
    Guerrier-Takada C, Gardiner K, Marsh T et al (1983) The RNA moiety of ribonuclease P is the catalytic subunit of the enzyme. Cell 35:849–857CrossRefGoogle Scholar
  6. 6.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346:818–822CrossRefGoogle Scholar
  7. 7.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249:505–510CrossRefGoogle Scholar
  8. 8.
    Robertson DL, Joyce GF (1990) Selection in vitro of an RNA enzyme that specifically cleaves single-stranded DNA. Nature 344:467–468CrossRefGoogle Scholar
  9. 9.
    Chapman KB, Szostak JW (1994) In vitro selection of catalytic RNAs. Curr Opin Struct Biol 4:618–622CrossRefGoogle Scholar
  10. 10.
    Breaker RR (1997) DNA aptamers and DNA enzymes. Curr Opin Chem Biol 1:26–31CrossRefGoogle Scholar
  11. 11.
    Wilson DS, Szostak JW (1999) In vitro selection of functional nucleic acids. Annu Rev Biochem 68:611–647CrossRefGoogle Scholar
  12. 12.
    Li Y, Breaker RR (1999) Deoxyribozymes: new players in the ancient game of biocatalysis. Curr Opin Struct Biol 9:315–323CrossRefGoogle Scholar
  13. 13.
    Famulok M, Mayer G, Blind M (2000) Nucleic acid aptamers-from selection in vitro to applications in vivo. Acc Chem Res 33:591–599CrossRefGoogle Scholar
  14. 14.
    Cech TR (2002) Ribozymes, the first 20 years. Biochem Soc Trans 30:1162–1166CrossRefGoogle Scholar
  15. 15.
    Emilsson GM, Breaker RR (2002) Deoxyribozymes: new activities and new applications. Cell Mol Life Sci 59:596–607CrossRefGoogle Scholar
  16. 16.
    Achenbach JC, Chiuman W, Cruz RP, Li Y (2004) DNAzymes: from creation in vitro to application in vivo. Curr Pharm Biotechnol 5:321–336CrossRefGoogle Scholar
  17. 17.
    Hobartner C, Silverman SK (2007) Recent advances in DNA catalysis. Biopolymers 87:279–292CrossRefGoogle Scholar
  18. 18.
    Schlosser K, Li Y (2009) Biologically inspired synthetic enzymes made from DNA. Chem Biol 16:311–322CrossRefGoogle Scholar
  19. 19.
    Stoddard CD, Batey RT (2006) Mix-and-match riboswitches. ACS Chem Biol 1:751–754CrossRefGoogle Scholar
  20. 20.
    Winkler WC, Breaker RR (2003) Genetic control by metabolite-binding riboswitches. Chembiochem 4:1024–1032CrossRefGoogle Scholar
  21. 21.
    Borovok I, Gorovitz B, Schreiber R et al (2006) Coenzyme B12 controls transcription of the Streptomyces class Ia ribonucleotide reductase nrdABS operon via a riboswitch mechanism. J Bacteriol 188:2512–2520CrossRefGoogle Scholar
  22. 22.
    Nahvi A, Sudarsan N, Ebert MS et al (2002) Genetic control by a metabolite binding mRNA. Chem Biol 9:1043CrossRefGoogle Scholar
  23. 23.
    Warner DF, Savvi S, Mizrahi V, Dawes SS (2007) A riboswitch regulates expression of the coenzyme B12-independent methionine synthase in Mycobacterium tuberculosis: implications for differential methionine synthase function in strains H37Rv and CDC1551. J Bacteriol 189:3655–3659CrossRefGoogle Scholar
  24. 24.
    Mandal M, Lee M, Barrick JE et al (2004) A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Science 306:275–279CrossRefGoogle Scholar
  25. 25.
    Grundy FJ, Lehman SC, Henkin TM (2003) The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes. Proc Natl Acad Sci USA 100:12057–12062CrossRefGoogle Scholar
  26. 26.
    Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS (2003) Regulation of lysine biosynthesis and transport genes in bacteria: yet another RNA riboswitch? Nucleic Acids Res 31:6748–6757CrossRefGoogle Scholar
  27. 27.
    Sudarsan N, Wickiser JK, Nakamura S et al (2003) An mRNA structure in bacteria that controls gene expression by binding lysine. Genes Dev 17:2688–2697CrossRefGoogle Scholar
  28. 28.
    Gilbert SD, Rambo RP, Van Tyne D, Batey RT (2008) Structure of the SAM-II riboswitch bound to S-adenosylmethionine. Nat Struct Mol Biol 15:177–182CrossRefGoogle Scholar
  29. 29.
    Corbino KA, Barrick JE, Lim J et al (2005) Evidence for a second class of S-adenosylmethionine riboswitches and other regulatory RNA motifs in alpha-proteobacteria. Genome Biol 6:R70CrossRefGoogle Scholar
  30. 30.
    Epshtein V, Mironov AS, Nudler E (2003) The riboswitch-mediated control of sulfur metabolism in bacteria. Proc Natl Acad Sci USA 100:5052–5056CrossRefGoogle Scholar
  31. 31.
    Fuchs RT, Grundy FJ, Henkin TM (2006) The S(MK) box is a new SAM-binding RNA for translational regulation of SAM synthetase. Nat Struct Mol Biol 13:226–233CrossRefGoogle Scholar
  32. 32.
    McDaniel BA, Grundy FJ, Artsimovitch I, Henkin TM (2003) Transcription termination control of the S box system: direct measurement of S-adenosylmethionine by the leader RNA. Proc Natl Acad Sci USA 100:3083–3088CrossRefGoogle Scholar
  33. 33.
    Winkler WC, Nahvi A, Sudarsan N et al (2003) An mRNA structure that controls gene expression by binding S-adenosylmethionine. Nat Struct Biol 10:701–707CrossRefGoogle Scholar
  34. 34.
    Wang JX, Lee ER, Morales DR et al (2008) Riboswitches that sense S-adenosylhomocysteine and activate genes involved in coenzyme recycling. Mol Cell 29:691–702CrossRefGoogle Scholar
  35. 35.
    Johansen LE, Nygaard P, Lassen C et al (2003) Definition of a second Bacillus subtilis pur regulon comprising the pur and xpt-pbuX operons plus pbuG, nupG (yxjA), and pbuE (ydhL). J Bacteriol 185:5200–5209CrossRefGoogle Scholar
  36. 36.
    Mandal M, Breaker RR (2004) Adenine riboswitches and gene activation by disruption of a transcription terminator. Nat Struct Mol Biol 11:29–35CrossRefGoogle Scholar
  37. 37.
    Mandal M, Boese B, Barrick JE et al (2003) Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113:577–586CrossRefGoogle Scholar
  38. 38.
    Roth A, Winkler WC, Regulski EE et al (2007) A riboswitch selective for the queuosine precursor preQ1 contains an unusually small aptamer domain. Nat Struct Mol Biol 14:308–317CrossRefGoogle Scholar
  39. 39.
    Meyer MM, Roth A, Chervin SM et al (2008) Confirmation of a second natural preQ1 aptamer class in Streptococcaceae bacteria. RNA 14:685–695CrossRefGoogle Scholar
  40. 40.
    Mironov AS, Gusarov I, Rafikov R et al (2002) Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 111:747–756CrossRefGoogle Scholar
  41. 41.
    Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS (2002) Comparative genomics of thiamin biosynthesis in procaryotes. New genes and regulatory. J Biol Chem 277:48949–48959CrossRefGoogle Scholar
  42. 42.
    Cheah MT, Wachter A, Sudarsan N, Breaker RR (2007) Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 447:497–500CrossRefGoogle Scholar
  43. 43.
    Wachter A, Tunc-Ozdemir M, Grove BC et al (2007) Riboswitch control of gene expression in plants by splicing and alternative 3′ end processing of mRNAs. Plant Cell 19:3437–3450CrossRefGoogle Scholar
  44. 44.
    Croft MT, Moulin M, Webb ME, Smith AG (2007) Thiamine biosynthesis in algae is regulated by riboswitches. Proc Natl Acad Sci USA 104:20770–20775CrossRefGoogle Scholar
  45. 45.
    Bocobza S, Adato A, Mandel T et al (2007) Riboswitch-dependent gene regulation and its evolution in the plant kingdom. Genes Dev 21:2874–2879CrossRefGoogle Scholar
  46. 46.
    Winkler WC, Cohen-Chalamish S, Breaker RR (2002) An mRNA structure that controls gene expression by binding FMN. Proc Natl Acad Sci USA 99:15908–15913CrossRefGoogle Scholar
  47. 47.
    Sudarsan N, Lee ER, Weinberg Z et al (2008) Riboswitches in eubacteria sense the second messenger cyclic di-GMP. Science 321:411–413CrossRefGoogle Scholar
  48. 48.
    Winkler WC, Nahvi A, Roth A et al (2004) Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428:281–286CrossRefGoogle Scholar
  49. 49.
    Cromie MJ, Shi Y, Latifi T, Groisman EA (2006) An RNA sensor for intracellular Mg(2+). Cell 125:71–84CrossRefGoogle Scholar
  50. 50.
    Klussmann S (2006) The aptamer handbook: functional oligonucleotides and their applications. Wiley-VCH, WeinheimGoogle Scholar
  51. 51.
    Mascini M (2009) Aptamers in bioanalysis. Wiley, New YorkCrossRefGoogle Scholar
  52. 52.
    Li Y, Lu Y (2009) Functional nucleic acids for analytical applications. Springer, New YorkGoogle Scholar
  53. 53.
    Lu Y, Liu J (2006) Functional DNA nanotechnology: emerging applications of DNAzymes and aptamers. Curr Opin Biotechnol 17:580–588CrossRefGoogle Scholar
  54. 54.
    Zhou C, Jiang Y, Hou S et al (2006) Detection of oncoprotein platelet-derived growth factor using a fluorescent signaling complex of an aptamer and TOTO. Anal Bioanal Chem 384:1175–1180CrossRefGoogle Scholar
  55. 55.
    Ho HA, Leclerc M (2004) Optical sensors based on hybrid aptamer/conjugated polymer complexes. J Am Chem Soc 126:1384–1387CrossRefGoogle Scholar
  56. 56.
    Nutiu R, Li Y (2004) Structure-switching signaling aptamers: transducing molecular recognition into fluorescence signaling. Chemistry 10:1868–1876CrossRefGoogle Scholar
  57. 57.
    Jhaveri SD, Kirby R, Conrad R et al (2000) Designed signaling aptamers that transduce molecular recognition to changes in fluorescence intensity. J Am Chem Soc 122:2469–2473CrossRefGoogle Scholar
  58. 58.
    Hermann T, Patel DJ (2000) Adaptive recognition by nucleic acid aptamers. Science 287:820–825CrossRefGoogle Scholar
  59. 59.
    Jhaveri S, Rajendran M, Ellington AD (2000) In vitro selection of signaling aptamers. Nat Biotechnol 18:1293–1297CrossRefGoogle Scholar
  60. 60.
    Tyagi S, Kramer FR (1996) Molecular beacons: probes that fluoresce upon hybridization. Nat Biotechnol 14:303–308CrossRefGoogle Scholar
  61. 61.
    Wang K, Tang Z, Yang CJ et al (2009) Molecular engineering of DNA: molecular beacons. Angew Chem Int Ed Engl 48:856–870CrossRefGoogle Scholar
  62. 62.
    Hamaguchi N, Ellington A, Stanton M (2001) Aptamer beacons for the direct detection of proteins. Anal Biochem 294:126–131CrossRefGoogle Scholar
  63. 63.
    Stojanovic MN, de Prada P, Landry DW (2000) Fluorescent sensors based on aptamer self-assembly. J Am Chem Soc 122:11547–11548CrossRefGoogle Scholar
  64. 64.
    Yamamoto R, Baba T, Kumar PK (2000) Molecular beacon aptamer fluoresces in the presence of Tat protein of HIV-1. Genes Cells 5:389–396CrossRefGoogle Scholar
  65. 65.
    Nutiu R, Li Y (2003) Structure-switching signaling aptamers. J Am Chem Soc 125:4771–4778CrossRefGoogle Scholar
  66. 66.
    Levy M, Cater SF, Ellington AD (2005) Quantum-dot aptamer beacons for the detection of proteins. Chembiochem 6:2163–2166CrossRefGoogle Scholar
  67. 67.
    Nutiu R, Li Y (2005) Aptamers with fluorescence-signaling properties. Methods 37:16–25CrossRefGoogle Scholar
  68. 68.
    Nutiu R, Li Y (2005) In vitro selection of structure-switching signaling aptamers. Angew Chem Int Ed Engl 44:1061–1065CrossRefGoogle Scholar
  69. 69.
    Tang Z, Mallikaratchy P, Yang R et al (2008) Aptamer switch probe based on intramolecular displacement. J Am Chem Soc 130:11268–11269CrossRefGoogle Scholar
  70. 70.
    Nutiu R, Yu JM, Li Y (2004) Signaling aptamers for monitoring enzymatic activity and for inhibitor screening. Chembiochem 5:1139–1144CrossRefGoogle Scholar
  71. 71.
    Elowe NH, Nutiu R, Allali-Hassani A et al (2006) Small-molecule screening made simple for a difficult target with a signaling nucleic acid aptamer that reports on deaminase activity. Angew Chem Int Ed Engl 45:5648–5652CrossRefGoogle Scholar
  72. 72.
    Nutiu R, Li Y (2005) A DNA-protein nanoengine for “on-demand” release and precise delivery of molecules. Angew Chem Int Ed Engl 44:5464–5467CrossRefGoogle Scholar
  73. 73.
    Rupcich N, Nutiu R, Li Y, Brennan JD (2005) Entrapment of fluorescent signaling DNA aptamers in sol-gel-derived silica. Anal Chem 77:4300–4307CrossRefGoogle Scholar
  74. 74.
    Silverman SK (2005) In vitro selection, characterization, and application of deoxyribozymes that cleave RNA. Nucleic Acids Res 33:6151–6163CrossRefGoogle Scholar
  75. 75.
    Breaker RR (2004) Natural and engineered nucleic acids as tools to explore biology. Nature 432:838–845CrossRefGoogle Scholar
  76. 76.
    Li Y, Breaker RR (2001) In vitro selection of kinase and ligase deoxyribozymes. Methods 23:179–190CrossRefGoogle Scholar
  77. 77.
    Shen Y, Chiuman W, Brennan JD, Li Y (2006) Catalysis and rational engineering of trans-acting pH6DZ1, an RNA-cleaving and fluorescence-signaling deoxyribozyme with a four-way junction structure. Chembiochem 7:1343–1348CrossRefGoogle Scholar
  78. 78.
    Liu J, Lu Y (2003) Improving fluorescent DNAzyme biosensors by combining inter- and intramolecular quenchers. Anal Chem 75:6666–6672CrossRefGoogle Scholar
  79. 79.
    Chiuman W, Li Y (2009) Fluorescent Ribozyme and Deoxyribozyme Sensors. In: Li Y, Lu Y (eds) Functional nucleic acids for analytical applications. Springer Science + Business Media, New York, NY, pp 131–153CrossRefGoogle Scholar
  80. 80.
    Xiang Y, Tong A, Lu Y (2009) Abasic site-containing DNAzyme and aptamer for label-free fluorescent detection of Pb(2+) and adenosine with high sensitivity, selectivity, and tunable dynamic range. J Am Chem Soc 131:15352–15357CrossRefGoogle Scholar
  81. 81.
    Wang H, Kim Y, Liu H et al (2009) Engineering a unimolecular DNA-catalytic probe for single lead ion monitoring. J Am Chem Soc 131:8221–8226CrossRefGoogle Scholar
  82. 82.
    Chiuman W, Li Y (2007) Efficient signaling platforms built from a small catalytic DNA and doubly labeled fluorogenic substrates. Nucleic Acids Res 35:401–405CrossRefGoogle Scholar
  83. 83.
    Mei SH, Liu Z, Brennan JD, Li Y (2003) An efficient RNA-cleaving DNA enzyme that synchronizes catalysis with fluorescence signaling. J Am Chem Soc 125:412–420CrossRefGoogle Scholar
  84. 84.
    Liu Z, Mei SH, Brennan JD, Li Y (2003) Assemblage of signaling DNA enzymes with intriguing metal-ion specificities and pH dependences. J Am Chem Soc 125:7539–7545CrossRefGoogle Scholar
  85. 85.
    Liu J, Brown AK, Meng X et al (2007) A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proc Natl Acad Sci USA 104:2056–2061CrossRefGoogle Scholar
  86. 86.
    Lim J, Grove BC, Roth A, Breaker RR (2006) Characteristics of ligand recognition by a glmS self-cleaving ribozyme. Angew Chem Int Ed Engl 45:6689–6693CrossRefGoogle Scholar
  87. 87.
    Blount K, Puskarz I, Penchovsky R, Breaker R (2006) Development and application of a high-throughput assay for glmS riboswitch activators. RNA Biol 3:77–81CrossRefGoogle Scholar
  88. 88.
    Stojanovic MN, Mitchell TE, Stefanovic D (2002) Deoxyribozyme-based logic gates. J Am Chem Soc 124:3555–3561CrossRefGoogle Scholar
  89. 89.
    Soukup GA, Breaker RR (1999) Engineering precision RNA molecular switches. Proc Natl Acad Sci USA 96:3584–3589CrossRefGoogle Scholar
  90. 90.
    Sekella PT, Rueda D, Walter NG (2002) A biosensor for theophylline based on fluorescence detection of ligand-induced hammerhead ribozyme cleavage. RNA 8:1242–1252CrossRefGoogle Scholar
  91. 91.
    Liu J, Lu Y (2007) Rational design of “turn-on” allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. Angew Chem Int Ed Engl 46:7587–7590CrossRefGoogle Scholar
  92. 92.
    Ferguson A, Boomer RM, Kurz M et al (2004) A novel strategy for selection of allosteric ribozymes yields RiboReporter sensors for caffeine and aspartame. Nucleic Acids Res 32:1756–1766CrossRefGoogle Scholar
  93. 93.
    Robertson MP, Ellington AD (2000) Design and optimization of effector-activated ribozyme ligases. Nucleic Acids Res 28:1751–1759CrossRefGoogle Scholar
  94. 94.
    Chiuman W, Li Y (2007) Simple fluorescent sensors engineered with catalytic DNA ‘MgZ’ based on a non-classic allosteric design. PLoS One 2:e1224CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  1. 1.Department of Biochemistry and Biomedical SciencesMcMaster UniversityHamiltonCanada
  2. 2.Department of Chemistry and Chemical BiologyMcMaster UniversityHamiltonCanada

Personalised recommendations